= 'Alexander Dickerson, Philippe Mueller, Cesare Robotti, 2023'
PROVIDER = 'https://openbondassetpricing.com/wp-content/uploads/2023/10/WRDS_MMN_Corrected_Data.csv.zip' #contains a gzip file inside a zip file
URL = 'WRDS_MMN_Corrected_Data.csv.gzip'
GZ_FILE = 'https://openbondassetpricing.com/'
HOST_WEBSITE = 'M'
FREQ = 2002
MIN_YEAR = None
MAX_YEAR = 'cusip' # 9 digit cusip
ENTITY_ID_IN_RAW_DSET = 'cusip'
ENTITY_ID_IN_CLEAN_DSET = 'date'
TIME_VAR_IN_RAW_DSET = f'{FREQ}date' TIME_VAR_IN_CLEAN_DSET
Dickerson, et al. (2023)
Bond returns and characteristics (TRACE only) from https://openbondassetpricing.com/
This module downloads and processes data developed by:
- Alexander Dickerson, Philippe Mueller, Cesare Robotti, 2023, “Priced risk in corporate bonds” Journal of Financial Economics, 150 (2), pp.2135-2202. https://doi.org/10.1016/j.jfineco.2023.103707.
See the authors’ dedicated website for more information on this dataset: https://openbondassetpricing.com/
get_raw_data
get_raw_data (url:str='https://openbondassetpricing.com/wp- content/uploads/2023/10/WRDS_MMN_Corrected_Data.csv.zip', gz_file:str='WRDS_MMN_Corrected_Data.csv.gzip')
Download raw data from url
Type | Default | Details | |
---|---|---|---|
url | str | https://openbondassetpricing.com/wp-content/uploads/2023/10/WRDS_MMN_Corrected_Data.csv.zip | |
gz_file | str | WRDS_MMN_Corrected_Data.csv.gzip | Name of the gzip file inside the zip file found at url |
Returns | pd.DataFrame |
= get_raw_data() raw
0) raw.head(
date | cusip | exretn_t+1 | exretnc_dur_t+1 | bond_ret_t+1 | bond_ret | exretn | exretnc_dur | rating | cs | ... | BOND_YIELD | CS | BONDPRC | PRFULL | DURATION | CONVEXITY | bond_value | BOND_VALUE | dtdate | Mdate |
---|
0 rows × 35 columns
process_raw_data
process_raw_data (df:pandas.core.frame.DataFrame=None, permno_to_bond_cusip:Union[bool,pandas.core.frame.DataF rame]=True)
Cleans up dates and optionally adds CRSP permnos
Type | Default | Details | |
---|---|---|---|
df | pd.DataFrame | None | |
permno_to_bond_cusip | bool | pd.DataFrame | True | Whether to download permno-cusip link. If DataFrame, must contain ‘cusip’ |
Returns | pd.DataFrame |
= process_raw_data(raw) clean
0) clean.head(
date | cusip | exretn_t+1 | exretnc_dur_t+1 | bond_ret_t+1 | bond_ret | exretn | exretnc_dur | rating | cs | ... | dtdate | Mdate | permno | permco | trace_startdt | trace_enddt | crsp_startdt | crsp_enddt | link_startdt | link_enddt |
---|
0 rows × 43 columns