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Abstract

Using a comprehensive, project-level database on drug development programs, we examine the

link between external financing markets and drug approval outcomes. We document a significant

increase in the percentage of projects explicitly citing lack of funding as the reason for termination

and show that these terminations correlate strongly with periods of rising equity financing costs.

Furthermore, we show evidence of growing clustering in drug development programs with respect

to the biological targets they pursue, leading to more correlated approval outcomes. We examine

whether this growing correlation has hampered the effectiveness of securitization techniques to

mitigate the increasing underinvestment risk we document in this study. We show that a failure to

diversify portfolios of drug development projects across biological targets significantly lowers their

performance.
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1 Introduction

The process of developing and bringing a new drug to market is complex, costly, and fraught with

uncertainty. Over the past several decades, pharmaceutical innovation has seen remarkable scien-

tific advances, generating substantial social and economic welfare gains (Murphy and Topel (2006)).

However, these advances are accompanied by ever-changing regulatory requirements, financial con-

straints, and shifting patterns of sponsor involvement. This paper examines the evolving landscape

of drug development, the critical financial constraints faced by sponsors, and how changes in drug

development concentration may impact both investment decisions and societal outcomes.

Drug development can be characterized as a multi-stage process involving substantial regulatory

oversight, beginning with preclinical research and continuing through clinical trials, approval, and

post-marketing surveillance. The development pathway requires sponsors – who range from very

large pharmaceutical firms to small biotechnology startups – to invest considerable resources over

an extended period, often without any guarantee of success. Each phase of clinical trials is designed

to rigorously assess safety and efficacy before advancing to subsequent phases. This process is not

only scientifically intensive but also a significant financial burden for many sponsors, particularly

given the long gestation periods, high costs, and low probabilities of approval that characterize

much of the industry (Lo and Thakor (2022)).

Our study draws on a rich dataset compiled from two proprietary databases provided by Cite-

line: Trialtrove, which tracks global clinical trials, and Pharmaprojects, which provides detailed

information on drug development pipelines. Trialtrove provides over 170 pieces of information

for each clinical trial, including data on trial design, sponsors, outcomes, and patient demograph-

ics. Pharmaprojects, meanwhile, offers comprehensive coverage of drugs from preclinical research

through to post-marketing phases, with data on over 100 drug-level characteristics, such as molec-

ular structure, mechanism of action, biological targets, and commercial status. The combined

dataset includes information on approximately 400,000 clinical trials across 200 countries and over

100,000 unique drugs, with coverage spanning the past three decades. These databases provide a

unique opportunity to examine the dynamics of drug development at the individual-project level.

This allows us to investigate key characteristics such as scientific risk, phase transition probabili-

ties, trial durations, and sponsor types, that play a critical role in shaping the financial risks and
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rewards associated with drug development.

Despite the continuous innovations in medical research and an increasing understanding of

disease mechanisms, the approval of a new drug remains an infrequent event. In our sample,

the overall probability of success (PoS) from the preclinical stage to approval is only 8.3%, and,

on average, only 20.8% of drugs that enter phase 1 are ultimately approved. These estimates

are significantly lower for drugs targeting complex diseases such as cancer, where we observe a

PoS from preclinical to approval of only 3.7% and a PoS from phase 1 to approval of only 8.4%.

This low probability of success is one of the key challenges for the pharmaceutical industry and

raises questions about the sustainability of current models of funding and innovation. Another

distinctive feature of drug development is its prolonged timeline. Our data shows that, on average,

it takes 6.05 years for a drug to progress from phase 1 to approval, with substantial variation

across therapeutic areas (e.g. oncology drugs have an average development time of 10.12 years).

These long development timelines delay the realization of revenues, increase the overall cost of drug

development, and amplify the risk that sponsors will need to secure additional financing.

The financial risks associated with drug development are not uniformly distributed across the

industry. Large pharmaceutical companies with established revenue streams from approved drugs

are more capable of bearing the costs of development and the inherent risks of clinical failure.

However, our data shows that the clinical trial process is dominated by small sponsors: the “Top

20 Pharma” companies (by size) sponsor only 20% of the clinical trials in our sample, while 56% of

trials have academic sponsors, and 23% of trials are sponsored by smaller pharmaceutical companies.

Given their limited sources of internally generated funds, these smaller sponsors are heavily reliant

on external financing.1 This creates a vulnerability in the drug development ecosystem, where

projects of high societal value may be abandoned for reasons unrelated to their clinical potential,

but rather due to financial constraints.2 This underinvestment risk is further exacerbated by the

technical complexity of drug development which creates strong information asymmetries between

1Recent evidence by Thakor et al. (2017) and Aghamolla and Thakor (2022) shows that the cost of capital for
smaller biopharma firms, measured by their stock market betas, is significantly higher than for large, established
pharmaceutical companies, reflecting their heightened exposure to financing risk.

2See Hall and Lerner (2010) and Kerr and Nanda (2015) for a more detailed discussion of this funding gap for
R&D investment relative to the social optimum. As examples of this funding gap in drug development, Kyle (2018)
shows evidence that countries are underinvesting in drugs with high therapeutic value (as measured by the French
Haute Authorité de Santé) and Krieger, Li, and Papanikolaou (2022) show that firms increase their investment in
novel drugs in response to a shock that reduced financial constraints (Medicare Part D).
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suppliers of capital and drug developers.3 Moreover, the low probabilities of approval make agency

problems harder to detect, as it is difficult to ascertain whether project failures are due to moral

hazard or the inherently low likelihood of success (see Thakor and Lo (2017) and Jorring et al.

(2021)). These financing frictions can distort investment away from the first-best choice, causing

firms to pass up on investments that may have not only significant societal value but also a positive

net present value.

In the first part of our paper, we present evidence that this risk of underinvestment in drug

development has increased significantly over the past two decades. First, we find that large, “Top

20 Pharma” companies are increasingly reducing their involvement in the clinical trial process,

particularly in the early phases of development. The percentage of phase 1 trials sponsored by these

large firms has declined from 28% in 2003 to just 11% in 2023. In contrast, smaller pharmaceutical

companies and academic institutions, which are generally more financially constrained, are assuming

a larger role in clinical research. Second, we show that clinical trial durations have increased

substantially over time. Drug-development projects which concluded in 2023 took, on average,

40% longer to complete than projects which concluded in 2001. Third, we document a significant

increase in the frequency of trials investigating drugs with unproven targets, which makes them

more speculative and therefore riskier in terms of both clinical and commercial outcomes. For

example, we find that, for clinical trials starting in 2023, 65% of drugs investigated had biological

targets which had no prior approval. For trials starting in 1993, this number was only 32%.

The larger preponderance of small sponsors, significantly longer lags between cash outflows and

inflows, and higher prevalence of unproven drug targets, all point to an increased exposure of drug

development projects to fluctuations in the supply of external financing. Consistent with these

trends we document a growing incidence of trial terminations due to lack of funding – from to 2.2%

of all terminations in 2000 to 7.8% in 2023.4 Furthermore, a regression analysis shows that, even

after we control for this trend, funding-related terminations are significantly more likely during

periods of low equity market sentiment, low IPO volume, or high equity market volatility.5

3This is the classic argument from Myers and Majluf (1984) who argue that asymmetric information leads to
higher costs of external financing due to adverse selection.

4For these tests, we use data compiled by Citeline analysts on the reason why clinical trials were terminated.
5We measure equity market sentiment using the Baker and Wurgler (2006) index and equity market volatility

using the VIX index from the CBOE. We focus on equity financing because biopharma firms make very little use of
debt financing (e.g. Giambona et al. (2021)). The heavy reliance on equity financing is common for R&D intensive
firms (Brown et al. (2009)) and is generally understood to be a consequence of their limited tangible assets to offer as
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In light of these challenges, in the second part of our paper we investigate a securitization

approach to financing drug development projects which may offer a solution to the increasing un-

derinvestment risks outlined above. Securitization involves pooling a portfolio of drug development

projects into a single investment vehicle, which can then issue different tranches of securities to

investors with varying risk preferences. The underlying hypothesis is that, by aggregating multiple

drug development projects, the idiosyncratic risks associated with individual projects—such as the

failure of a specific clinical trial—can be diversified away, resulting in a more stable and attractive

investment proposition. This concept, first introduced by Fernandez et al. (2012), highlights the

potential for financial engineering to provide a more sustainable model for funding pharmaceutical

innovation.

However, a critical consideration in the application of securitization to drug development is

the degree of correlation between the individual projects within a portfolio. Correlations can arise

when multiple drugs target the same biological pathway or mechanism of action, thereby increasing

the likelihood that failures are not independent events. For example, if the underlying target is

invalid or if the safety profile of the target is problematic, all drugs targeting that same pathway are

likely to fail. Our analysis reveals a significant degree of concentration of drug development efforts

around a limited number of biological targets. In our sample, we have 47,546 unique drugs with

target data, and only 3,464 unique targets, which amounts to an average of 13.7 drugs per target.

Moreover, we show that this concentration has increased substantially over time. The number of

drugs investigated has significantly outpaced the number of targets (though both have increased

steadily over time). Furthermore, the Gini index of inequality in target usage has increased from

0.42 in 1998 to 0.6 in 2021. Finally, we document a strong positive relation between a drug’s

approval probability and the average approval rate of drugs with the same target. This provides

evidence of a strong link between target concentration and cross-drug correlations in approval

outcomes.

Our investigation of the dynamics of drug-target concentrations reveals two opposing forces that

may influence the extent to which portfolios of drug-development programs can achieve better risk-

return tradeoffs. On one hand, the increased concentration of drugs and trials around similar targets

collateral (e.g. Rampini and Viswanathan (2013)), and high information asymmetry between borrowers and lenders
(e.g. Besanko and Thakor (1987)). We use the IPO volume as a measure of the availability of equity financing, as it
is a common way for biotechnology firms to raise capital (Aghamolla and Thakor (2022)).
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means that, in recent periods, randomly selecting drugs for a portfolio is more likely to include drugs

sharing the same target. Based on our results, this should lead to more correlated outcomes among

the drugs in the portfolio. On the other hand, the larger number of available targets in recent

periods presents an opportunity to enhance portfolio diversification by carefully selecting drugs

with unrelated targets. We explore how these competing forces impact drug-portfolio performance

through a series of simulations designed to assess how portfolio risks and average returns change

with portfolio size. Specifically, we construct portfolios ranging from 1 to 100 drugs by randomly

drawing drug-development projects from our Pharmaprojects dataset and recording their realized

approval outcomes. Portfolio returns are measured as the number of drugs in the portfolio that

achieved regulatory approval divided by the total clinical trial costs incurred.6 This measure aims

to capture societal value without having to assign relative weights to different medical conditions.

Our findings reveal significant benefits of diversification in drug development. Portfolios con-

sisting of 20 drugs demonstrated a substantial decrease in risk compared to single-drug portfolios.

Specifically, the standard deviation of returns decreased by 70%, and the likelihood of obtaining

no approvals dropped from 79% to less than 1%. Additionally, the average returns nearly doubled

when increasing the portfolio size from 1 to 20 drugs (from 0.57 approvals per billion spent, to

1.05). We find that expanding the portfolio beyond 20 drugs yielded minimal additional benefits

in average returns, although it continued to reduce portfolio risk significantly.

To examine how increased correlations in drug-development outcomes might affect these diver-

sification benefits, we run simulations on cohorts of drugs that started development in the same

year, between 1998 and 2013.7 We find that average returns on single-drug portfolios decreased

significantly over time, from 2.24 approvals per billion spent in 1998 to 0.46 in 2013. However,

portfolios of 20 drugs experienced a much smaller decline in average returns, from 2.55 in 1998, to

1.00 in 2013. This highlights the fact that the benefits of scale for improving capital efficiency have

increased over time: in 2013, moving from a scale of 1 to 20 drugs, provides an increase of 115% in

average approvals per billion spent (from 0.46 to 1.00), while in 1998 this would have provided only

a 14% improvement (from 2.24 to 2.55). Finally, we observe no improvements in portfolio average

6Clinical trials costs are drawn randomly from log-normal distributions with parameters calibrated based on cost
estimates from DiMasi, Grabowski, and Hansen (2016).

7We end the simulations in 2013 to avoid a downward bias in approval frequencies caused by the fact that we can
only include completed drug-development programs in our tests.
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returns from increasing portfolio size beyond 20 drugs, in any of the years in our sample.

We find a similar pattern in the evolution of portfolio standard deviations: they decrease

significantly over time, but substantially less for portfolios of 20 drugs (from 0.64 in 1998 to 0.41

in 2013) than for portfolios of a single drug (from 3.21 in 1998 to 1.14 in 2013). While the decline

in standard deviations is partly caused by the decline in approval probabilities, we show that it

is also, to a large extent, attributable to a decline in the variance of the number of approvals in

the portfolio. This suggests that the increase in concentration around similar targets, which has

created larger pockets of highly correlated outcomes, is dominated by the significant increase in the

total number of targets available, resulting in lower average pairwise correlations over time. The

overall effect is that portfolios of 20 drugs continue to provide substantial diversification benefits

in every year of our sample, reducing portfolio standard deviations by at least 60% compared to

the average single-drug portfolio.

Finally, we show that portfolios that are less diversified across biological targets provide signif-

icantly worse risk-return tradeoffs. To do so, we build portfolios by randomly drawing from the set

of available targets each year (as opposed to randomly drawing from the set of unique drugs) and,

once a target is selected, we include all the drugs with that target in the portfolio. We continue to

do so until the total number of drugs in the portfolio matches the desired scale. We find that, for

every year in our sample, this portfolio construction technique results in significantly lower ratios

of average return to standard deviation than the random-drug selection approach we use in the rest

of our simulations. This finding highlights the idea that improper diversification across targets can

substantially reduce the benefits of scale in drug development.

The remainder of this paper is organized as follows: Section 2 provides an overview of the drug

development process, highlighting the stages of clinical trials, regulatory requirements, and the

roles of different stakeholders. Section 3 describes the data sources and main variables used in our

analysis. In Section 4, we analyze the growing importance of financial constraints and their impact

on clinical trial terminations, with particular attention to the role of sponsor type and macroeco-

nomic factors. Section 5 explores the increased concentration in drug development programs and

the implications for portfolio diversification. Finally, Section 6 presents our simulation results on

the performance of drug portfolios and how it has changed over time.
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2 The drug development process

The process of drug approval is a multi-stage and highly regulated pathway overseen by regulatory

agencies like the U.S. Food and Drug Administration (FDA) or the European Medicines Agency

(EMA). It begins with preclinical testing, where a drug’s efficacy and safety are evaluated in labo-

ratory and animal studies. This phase ensures that the drug shows promise before human testing.

Once preclinical data supports potential success, the drug’s “sponsor” (typically a pharmaceutical

company, biotechnology firm, or academic research institution) submits an Investigational New

Drug (IND) application to the regulatory agency, seeking permission to start clinical trials in hu-

mans. Regulatory agencies play a crucial role in evaluating the IND submission, reviewing safety

data, and ensuring that the drug can be tested without undue risk to participants.

After IND approval, the clinical trial process begins, consisting of three phases. In phase 1,

the drug is tested on a small group of healthy volunteers or patients to evaluate safety, dosage

range, and pharmacokinetics. Phase 2 involves a larger group of patients to assess efficacy, further

evaluate safety, and finalize dosing for phase 3. In phase 3, the drug is tested on a much larger

population to confirm its effectiveness, monitor side effects, and compare it to standard treatments.

During each phase, sponsors must submit detailed reports to the regulatory agencies, who may halt

trials if concerns about safety or efficacy arise. Sponsors, who are responsible for financing and

organizing these studies, may experience significant financial strain as they advance through the

lengthy and expensive clinical trial process.

It is important to note that each clinical trial phase can encompass multiple drugs or explore

several indications, particularly in areas like oncology or rare diseases, where therapies may target

different subsets of patients. In phase 1, the trial typically focuses on a single drug to assess safety

and tolerability, often in a small population of healthy volunteers or patients. However, sponsors

sometimes conduct ”basket” phase 1 trials, testing a drug across different indications or patient

subtypes. This strategy helps identify which patient populations or conditions show the most

promising safety and efficacy signals, setting the stage for more targeted investigations in phase 2.

As the drug advances to phase 2, sponsors often design multiple trials based on findings from

phase 1. A single phase 1 trial might give rise to several phase 2 trials, each tailored to a specific

indication, dosage regimen, or patient subgroup. The goal is to further explore efficacy while refining
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the target population. This evolution continues into phase 3, where the focus narrows even more.

In phase 3, multiple trials may run concurrently, but each will usually have a defined population

and indication, based on data from prior phases. The sponsor refines the drug’s positioning for

regulatory approval by optimizing both the indication and the patient population most likely to

benefit from the therapy, potentially seeking approvals across several related indications depending

on trial outcomes.

The success or failure of a trial is largely determined by whether its “endpoints” are met. Trial

endpoints are the predefined objectives or outcomes that a clinical trial is designed to measure in

order to assess the drug’s efficacy, safety, or other relevant factors. Endpoints can be categorized as

primary (the most important outcomes, like overall survival or symptom reduction) or secondary

(additional effects, such as quality of life improvements). Regulatory agencies, like the FDA or

EMA, closely evaluate the outcomes of these endpoints when deciding whether a drug can progress

to the next phase of development.8 Although sponsors have the ability to decide whether to proceed

with trials, regulatory agencies retain the authority to halt development if the phase 1 endpoints

indicate significant safety concerns or if efficacy is insufficient. Sponsors typically decide whether to

move forward based on both endpoint results and strategic considerations, but regulatory oversight

ensures that only drugs with acceptable safety and efficacy profiles continue to later phases.

Upon successful completion of phase 3, the sponsor submits a New Drug Application (NDA)

or a Biologics License Application (BLA) to the regulatory agency. The agency reviews the full

body of evidence, including clinical trial data, manufacturing details, and labeling information.

The approval process is rigorous, often requiring months of analysis, advisory committee reviews,

and potential additional studies before a decision is made. If the drug is deemed safe and effective,

it is approved for marketing.

Regulatory agencies continue to monitor the drug post-approval through pharmacovigilance

systems, including phase 4 trials, which collect long-term safety and efficacy data in larger and

more diverse populations. These post-marketing studies help identify rare or delayed side effects

that may not have emerged during earlier trials. In addition to phase 4 trials, pharmacovigilance

systems include spontaneous reporting databases (such as the FDA’s Adverse Event Reporting

8Regulatory agencies also provide input on endpoint selection, especially in phase 3, where they can reject a drug
if the endpoint used is not up to standard.
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System), electronic health records, and observational studies, all of which help ensure that emerging

safety concerns are addressed in real-world clinical settings.

After a drug is approved by regulatory agencies like the FDA or EMA, the firm typically gains

certain protections against direct competition. These protections generally fall into two categories:

marketing exclusivity and patent protection. Marketing exclusivity is granted by regulatory agen-

cies and prevents other companies from marketing a competing generic or biosimilar version of the

drug for a specific period. In the U.S., for example, new chemical entities (NCEs) are granted

five years of exclusivity, while biologics receive 12 years under the Biologics Price Competition and

Innovation Act. This protection is independent of any patent protection and serves as a reward for

the investment in bringing a new drug to market.

Patent protection, on the other hand, is managed through intellectual property laws and can last

up to 20 years from the date of filing. Patents cover the drug’s chemical structure, manufacturing

processes, or methods of use. Because patents are often filed during early development, much

of the patent life can expire before the drug is approved. However, firms can sometimes extend

patent protection through mechanisms like patent term extensions (for delays in the approval

process) or by filing additional patents on new formulations or uses of the drug. While marketing

exclusivity offers a shorter period of protection, it begins immediately after approval and blocks

generic competition, even if the drug’s patent has expired. Both forms of protection provide the

firm with a temporary monopoly, allowing them to recoup research and development costs before

facing generic competition.

3 Data

We compile data on drug development programs from two proprietary databases: Trialtrove, which

contains information on individual clinical trials, and Pharmaprojects which provides data on

individual drugs. Both databases are offered by Citeline, which has recently been acquired by

Nostrella. The raw data comes in JSON format (downloaded on June 2024 through API calls to

the Citeline servers) and contains both numeric fields and text fields which we further process to

build structured datasets for our analysis. The remainder of this section describes these datasets

in more detail.
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3.1 Clinical trial data

Trialtrove is a comprehensive clinical trial database that tracks clinical studies across all phases of

drug development globally. Trialtrove compiles its data from multiple sources, including trial reg-

istries (such as ClinicalTrials.gov and the EU Clinical Trials Register), regulatory filings, conference

presentations, and company reports. While information from trial registries is freely available, the

additional sources of information used by Trialtrove play an important role, as they help mitigate

the potential sample selection bias created by the fact that sponsors were not required to report

information on their clinical studies until recently (e.g. 2007 in the United States, and 2022 in the

European Union).

Trialtrove tracks over 170 pieces of information for each individual clinical trial, including data

on the drug and disease targeted in the trial, as well as the trial’s beginning and end dates, phase,

sponsors, locations, principal investigators, patient segments, endpoints (objectives) and outcomes.

The trial beginning and end dates allows us to analyze trends in clinical research over the past

three decades. The information on trial outcomes (whether the trial endpoints were met or not,

or whether the trial was terminated and, if so, for what reason) enable us to analyze the extent

to which trials are terminated due to lack of funding or other business-related reasons (Section 4).

The database does not contain information on whether the trial lead to a successful transition to a

subsequent phase (or approval). This is inferred from the drug-level data described in the following

two sections.

Table 1 presents summary statistics for some key variables in the Trialtrove database. Panel A

show coverage statistics for the full dataset (first two columns), as well as for the top 40 countries

where the most trials were conducted (the following two columns), and for the United States (last

two columns). The full sample of 200 countries consists of 407,935 unique trials, with 374,191 of

them (92%) coming from the top 40 countries, and 123,656 of them taking place in the United

States (30%). Panel A also shows that, while some clinical trials are missing critical information

such as the trial phase, sponsor, and therapeutic area (e.g. disease targeted), coverage for these

items is quite good, ranging from 88% to 93% in the full sample. Panel B shows that around 14%

of the trials in our dateset are still ongoing, 74% have completed and 11% have been terminated,

though, in the United States, a larger proportion of trials seem to be terminated (17%). In our
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analysis below, when data on trial outcomes is needed, we discard the ongoing trials since their

outcomes are not yet known.

The remaining panels in Table 1 provide more detailed information on trial phase, sponsor

type, and therapeutic area. Panel A shows the breakdown of the data by trial phase. Phase 3 is

the least common, reflecting the fact that most drugs never reach that phase. Note that it is not

surprising that we have more phase 2 trials than phase 1 trials since, as discussed in the previous

section, a successful phase 1 trial often results in multiple phase 2 trials often looking for signals of

efficacy in a number of possible settings (e.g. different disease areas). While we have a substantial

number of phase 4 trials in our data, we do not use them in our subsequent analysis, since these

are post-approval trials, and our study is primarily focused on the costs and risk of obtaining

regulatory approval for drug-development projects. Panel D shows the breakdown by sponsor type

(as categorized by Trialtrove). The main takeaway from this panel is that, while large “Top 20

Pharma” companies sponsor a substantial proportion of trials (20%), the vast majority of trials are

sponsored by academic institutions (56%) and smaller pharma companies (23%). Not surprisingly,

in the United States, where the financial incentives of obtaining approval are stronger, the top 20

pharma companies sponsor a larger proportion of trials (34%). Finally, Panel E breaks down the

sample by the broad therapeutic area of the disease targeted in the trial. Here we see that Oncology

and Central Nervous System (CNS) diseases are the most widely represented, together accounting

for 44% of the trials in our data (55% in the United States), though Autoimmune/Inflammation,

Infectious Disease, Cardiovascular and Metabolic/Endocrinology are also very well represented at

13-14% of the sample each.9

Figure 1 shows trial counts over time, by phase. On the x-axis, we have the year when the trial

started. We include only the data in the past 3 decades to keep the graph more readable, though

we do have a small number of trials starting before 1993. The top panel includes all the countries

in our dataset, and the bottom panel includes only the trials taking place in the United States. In

both panels, we observe a steady increase in the number of clinical trials (for all phases) over time,

though, in the United States this growth seems to have stopped around the year 2007 when the

FDA mandated that clinical trial data be made public. The graph shows a noticeable increase in

9Note that, for panels D and E, these percentages will add up to more than 100% as a trial can have multiple
sponsors or target multiple therapeutic areas.

11



clinical trials around the onset of the COVID-19 pandemic. The decrease in trials following this

period is likely caused by the fact that Trialtrove may still be collecting data on the trials that

started in 2022 and 2023.

In Table 2, we highlight a key feature of drug-development projects, namely their lengthy

durations. The table presents average trial duration, in years, by phase and therapeutic area, for

all countries in our sample (Panel A) as well as just for the trials taking place in the United States

(Panel B). The last column in the table shows the total duration of phases 1 through 3 combined.

This column shows that, averaging over all therapeutic areas, the approval process takes 6.05 years

(7.18 years in the United States). There is substantial variation on trial duration across therapeutic

areas, ranging from an average of 3.99 years for Vaccines to 10.12 years for Oncology drugs. Phases

2 and 3 have similar durations, at 2.49 and 2.37 years respectively (2.76 and 2.55 in the United

States), and they take substantially longer to complete than phase 1 trials (1.19 years in the full

dataset, and 1.89 years in the United States).10 The results in Table 2 attest to the fact that

drug-developing companies experience very substantial delays between the time costs are incurred

and the time revenue (if any) is realized.

3.2 Drug-level data

The Pharmaprojects database tracks drug development pipelines globally, offering extensive cover-

age of drugs from preclinical research through to post-marketing phases. It aggregates data from

a variety of primary sources, including regulatory filings, corporate disclosures, press releases, and

scientific literature. Pharmaprojects provides detailed profiles on each drug, tracking close to 100

pieces of information including the drug’s chemical structure, mechanism of action, therapeutic

target, and commercial status. Each drug profile also contains information on all the diseases for

which the drug has been tested, and on the important parties involved in its development (e.g. its

originator and licensees).

Table 3 shows summary statistics for the drug-level data obtained from Pharmaprojects, both

for the full sample of drugs (first two columns) and for the sample of drugs for which we have

clinical trial data from Trialtrove (last two columns). Panel A shows that we have 104,129 unique

10To account for the presence of outliers, in Table A.1 of the Appendix, we present median trial durations by
therapeutic areas. We find that the median drug approval process takes 4.3 years in the full sample, and 5.37 years
in the United States.
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drugs in Pharmaprojects, out of which 28,606 also have clinical trial information. Panel A also

shows that almost all drugs in the dataset also have information on the drug’s origin (e.g. chemical

or biological) and the broad indication (disease) groups for which the drug has been developed.

Only 70% of drug profiles contain information on the drug’s mechanism of action (MOA) and

46% of them contain information on the drug’s biological target. These variables a more readily

available in the sample of drugs with clinical trial data, at 83% and 63% respectively. We discuss

drug MOAs and targets in more detail in Section 5 where we analyze the industry’s concentration

around similar MOA’s and drug targets.

Panel B of Table 3 shows that about a third of the drugs in Pharmaprojects have biological origin

(aka “biologics” or “large molecule” drugs) and two thirds have chemical origin (aka “synthetic”

or “small molecule” drugs). Panel C shows a breakdown of drugs by the main therapeutic area

(indication group) of the diseases they target. Just as with the clinical trial data, we see that drugs

targeting Anticancer and Neurological disease appear with the highest frequency in the drug-level

data as well. Comparing this panel with Panel E in Table 1, also shows that Pharmaprojects

and Trialtrove use different disease classifications (and names). This complicates the process of

merging the two databases at the drug-disease level. We discuss this merging process in more

detail in Section 6.

Most of the Pharmaprojects data is not timestamped. However, for most drugs that have ever

been approved (for any disease, in any country), the database provides a “marketing” text field,

which contains a discussion (by Pharmaprojects analysts) of when the drug was approved for each

disease, in each country. The database also includes a “keyEvents” field, which provides timestamps

for some (but not all) important events in the drug’s global development (e.g. approval dates in

particular countries, or dates when new licensing agreements for the drug were created). We use

a combination of natural language processing algorithms and manual verification to extract these

approval dates from the “marketing” and “keyEvents” sections.

3.3 Drug-development programs

In 2020, Pharmaprojects performed a large scale, manual curation exercise through which they

were able to identify which sponsors developed which drug, for which disease, in which country.

Pharmaprojects refers to this as the “Drug Program Landscape” dataset, and to each drug-disease-
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sponsor-country record as a “drug program”. We adopt this definition in our study. For the

purpose of our analysis, the most important variable in this dataset is the “highestPhaseReached”

variable, which, as the name suggests, records the highest development phase reached by each drug-

development program. This is the main variable we use to determine which clinical trial phases

a drug has passed or failed. Namely, we assume that every clinical trial associated with a given

drug-development program was successful if its phase is lower than the “highestPhaseReached” of

that program, and unsuccessful otherwise.

Table 4 presents descriptive statistics for the Drug Program Landscape dataset described above.

Panel A shows that this dataset contains information on 584,726 unique drug–disease–sponsor–

country records, corresponding to 226,356 unique drug–disease–sponsor triples, and 174,937 drug-

disease pairs. Panel B breaks down the unique drug–disease–sponsor–country records by their

current development status (as of June 2024, when we downloaded the data) and shows that 29%

of them are “Widely Launched” (i.e. they have been approved and is already selling), 55% of them

have “Ceased” (i.e. they have ended development and have either failed or are awaiting approval)

and 17% of them are still under active development. Note that the 29% approval frequency doc-

umented in this panel is not representative of the ex-ante probability of a drug being approved

for a given disease, since drug-disease pairs that receive approval in some country, are significantly

more likely to be subsequently developed in other countries and/or by other sponsors (e.g. through

licensing agreements). In the last two columns in the table we compute these frequencies only using

drug-development programs from the United States. Here we see that only 6% of these programs

have launched, which, as we will see below, is much more representative of the average probability

of success in the United States.

Panel C of Table 4 shows a breakdown of drug-development programs by “highestPhaseReached”.

Here, under the “Approved” category, we combine both drugs that have reached the “Registered”

phase (i.e. approved but not yet selling) and the drugs that have reached the “Launched” phase

(approved and selling). Once again, we see a much higher frequency of approved drugs in the full

dataset (32%) compared to the United States (7%), again stemming from the tendency of successful

drugs to be developed in more countries than unsuccesful ones.

In Table 5, we use the “highestPhaseReached” to estimate average transition probabilities for

each phase of the approval process, by therapeutic area. We do so using both the entire dataset
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(Panel A) as well as just the United States (Panel B). In Panel A, to avoid the double-counting

issues mentioned above, we aggregate the data across countries and sponsors, by taking, for each

drug-disease record, the maximum of “highestPhaseReached” over all the countries and sponsors

associated with that drug-disease pair.11 This raises the concern that low regulatory standards in

some of the countries in our dataset could artificially inflate our transition probabilities (e.g. if

a drug-disease program fails in the United States and the European Union, but gets approved in

any other country, we would count that as a successful program). To avoid this concern (beyond

providing results for the United States alone), in Panel A, we use only the countries with the very

highest regulatory standards: the United States, Japan, and the European Union countries.12 The

first column in the table shows the number of unique drug-disease records for each therapeutic area

as well as in the full sample (last row in each panel). The following 4 rows in the table show the

frequency with which drug-disease programs pass each phase, from preclinical (“Pre” in the table)

all the way up to approval (“A” in the table). More specifically, the probability to transition from

phase i is computed as 1 minus the probability of failing to transition from phase i (i.e. 1 minus

the number of drug-disease pairs that fail in phase i divided by the number of drug-disease pairs

that reach at least phase i):

Pi = 1− N(highestPhaseReached = i)

N(highestPhaseReached ≥ i)
(1)

where i ∈ {Pre, 1, 2, 3, A}.13

The results in the “Total” row from Panel A of Table 5 show that a substantial percentage of

drug development programs (60%) never pass the preclinical stage. During the clinical trial process,

most failures happen in phase 2 (only 46.8% of drugs pass it), followed by phase 3 (63% transition

probability) and phase 1 (70% transition probability). The last two columns in the table present

overall probabilities of success (PoS) from preclinical to approval (PPre−A, which is the product

of all 4 phase transition probabilities) and from phase 1 to approval (P1−A, which is the product

of P1−2, P2−3, and P3−A). These estimates show that, the unconditional PoS starting from the

11Given this aggregation, in the rest of the paper, a drug-development program is synonymous with a drug-disease
pair.

12We verify, in robustness tests, that all our results are qualitatively unchanged if we use the full set of countries
in the Pharmaprojects dataset to determine likelihoods of approval.

13In calculating these probabilities, we exclude drugs that are still in active development.
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preclinical phase is only 8.3% and the PoS starting from phase 1 is 20.8%. For the United States

(Panel B), the transition probabilities and PoS estimates are lower almost across the board, though

the largest difference is in phase 3, where the average transition probability is only 56.5% in the

United States, compared to 63% worldwide.

Table 5 also shows substantial variation in PoS across different therapeutic areas. For example,

anticancer and neurological drugs, which together constitute almost half the sample, have the lowest

PoS (8.4% and 21% respectively for the P1−A). On the other end of the spectrum, anti-infective

drugs, also very well represented in our sample, have a PoS starting from phase 1 of 32.2%. Overall,

the results in Table 5 highlight another key characteristics of the drug-development process, namely

that the likelihood of the project ever generating any revenue is very low.

4 The growing importance of financial constraints

The long durations and low probabilities of success of drug-development projects, together with

the fact that a large proportion of these projects are undertaken by sponsors that do not have a

significant source of internally generated cash flows, suggests that innovation in drug development

is significantly exposed to shocks in the supply of external financing. In this section, we present

evidence that this exposure has likely increased over time. We show that, over the past two decades,

the percentage of trials terminated due to lack of financing has substantially increased, the per-

centage of trials with large, “Top 20 Pharma” sponsors has decreased, and clinical trials exhibit

significantly longer durations, and higher scientific risk. We then show regression evidence tying

funding-related trial terminations to sponsor size, trial durations, equity valuations and macroeco-

nomic uncertainty.

We begin with an analysis of trial outcomes, as reported in the “trialOutcomes” field in Tri-

altrove. Table 6 summarizes how Trialtrove analysts have categorized the outcomes of completed

(Panel A) or terminated trials (Panel B). For each outcome category, the first two columns report

counts and frequencies for that outcome in the full sample, and the last two columns present these

statistics for trials taking place in the United States. Panel A shows that, for a significant portion

of trials, outcome information was either not found (33% of trials have “Outcome unknown”) or

was difficult to categorize (11% of trials have “Outcome indeterminate”). This caveat notwith-
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standing, Panel A suggests that almost half of completed trials (45% in the full sample, and 48%

in the United States) have positive outcomes (i.e. primary endpoints were met). In contrast, only

9% of completed trials have negative outcomes in the full sample, and 12% in the United States.

While it is possible that this discrepancy between positive and negative outcomes could be caused

by information on trials with negative outcomes being more difficult to find, it is also important

to remember that, meeting primary endpoints does not necessarily imply a successful transition

to a subsequent phase, since, as described in Section 2, trial results still need to be submitted to

regulatory agencies for evaluation.14

More importantly for our analysis, Panel B of Table 6 shows that, despite a large number of

trials being terminated for reasons having to do with the science and logistics of the trial (e.g. “Poor

enrollment”, “Lack of efficacy”, and “Safety/adverse effects”), a substantial number of trials have

also been terminated for financial or business-related reasons. Indeed, the first column in the table

shows that 1,268 trials have been terminated due to lack of funding, and over 8,300 trials have been

terminated based on business decisions (3,220 terminations due to “Pipeline reprioritization”, 1,237

due to “Drug strategy shift” and 3,917 terminations citing “Other” business decisions).15 The last

two columns in Panel B show that these financing or business-related terminations are relatively

more common in the United States than in the full sample, which is perhaps not surprising, since

the larger healthcare costs in the United States are likely to result in substantially larger costs of

running clinical trials (Lorenzoni and Dougherty (2022)).

To examine the extent to which these funding- and business-related terminations have changed

over time, in Figure 2, in the two leftmost panels, we plot the percentage of trial terminations

due to lack of funding and, in the rightmost panels, we plot the percentage of terminations citing

a business decision (“Pipeline reprioritization”, “Drug strategy shift”, or “Other”). The top-left

panel shows a strong upward trend in the percentage of funding-related terminations both in the

full sample, and particularly in the United States, where, in 2023, 7.8% of trial terminations cited

lack of funding, up from only 2.2% in 2000. Consistent with the idea that these terminations are

caused by financial constraints, the bottom-left panel shows that funding-related terminations (in

14Also note that, even if trials meet their endpoints, sponsors might decide not to continue development if they
believe trial results were not sufficiently positive to warrant a subsequent phase.

15The difference between “Pipeline reprioritization” and “Drug strategy shift” according to Pharmaprojects is that
with a pipeline reprioritization, the compound is no longer in active development for any indication, while with a
drug strategy shift, development continues in other indications or with a follow-on compound.
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the full sample) are significantly less frequent among Top 20 Pharma sponsors than in the “All

but Top 20 Pharma” group, though both groups show a significant upward trend. This is direct

evidence that financial constraints play an increasingly important role in the drug development

process.

The top-right panel of Figure 2 also shows an increase in the percentage of terminations citing

business reasons, though most of this increase seems to have happened after 2020. It is conceivable

that some of these terminations could also be funding related (perhaps a “Pipeline reprioritization”

would not be needed if funding was readily available). While this is certainly possible, the bottom-

right panel of the figure shows that financial constraints are likely not the main driver behind these

business-related terminations, given that they are significantly more common among the “Top 20

Pharma” sponsors.

Next, we examine the extent to which the composition of trial sponsor types has changed over

time. To this end, in Figure 3 we plot the number of trials initiated every year, by sponsor type.

We restrict ourselves to the largest 3 sponsor categories, which cover between 88% and 99% of

trials in our sample every year: “Academic”, “Top 20 Pharma”, and “All Other Pharma”. The

primary insight obtained from this figure is that the “Top 20 Pharma” sponsors have significantly

decreased their involvement in the clinical trial process over time, while the “All Other Pharma”

sponsors have substantially increased theirs. More specifically, Panel A shows that, in 2023, the

largest pharma companies sponsored only 11% of all trials in our sample, down from 28% in 2003.

In contrast, pharma companies outside the top 20 sponsored 31% of trials in 2023, up from 13%

in 2003. Panel B shows that these trends are also present when we include only trials from the

United States. The percentage of trials sponsored by “Top 20 Pharma” nearly halved in the last 20

years (from 43% to 24%) while the percentage of trials sponsored by “All Other Pharma” nearly

doubled (from 18% to 35%). Finally, while relatively stable over time, the percentage of trials with

academic sponsors is substantial, at 42% in the full sample, and 36% in the United States in 2023.

These findings highlight a key structural change in the drug-development process: the past two

decades have seen a steady and significant increase in the proportion of trials sponsored by entities

which are more likely to experience financial constraints.

To explore this phenomenon further, in Figure 4 we break down the trends documented in Figure

3 by trial phase. The figure presents three main findings. First, the general decrease (increase)
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in trial sponsorship by large (small) pharma companies is present at all phases of development.

Second, these trends seem to be the somewhat stronger for phase 1 trials, and weaker for phase 3

trials. Indeed, by 2023, “Top 20 Pharma” sponsorship has decreased to only 10% for phase 1 trials

while “All Other Pharma” sponsorship has increased to 40% of trials. For phase 3 trials, these

percentages are somewhat less extreme at 17% and 32% respectively. Third, trials in the United

States see a significantly larger involvement from “Top 20 Pharma” companies in all three phases,

and particularly in phase 3, where they still sponsor 37% of trials. This is not surprising, given

the larger financial rewards that come with approval in the United States (Mulcahy, Schwam, and

Lovejoy (2024)).

To investigate how trial durations have changed over time, from 2001 to 2023, we calculate aver-

age trial durations by trial phase and therapeutic area, separately for each cohort of trials ending in

each year.16 For each therapeutic area, every year, we add up the average trial durations for phases

1 through 3, and we plot these total durations over time in separate panels of Figure 5. For almost

all therapeutic areas, we observe a significant increase in trial durations over time, particularly for

trials in the United States. For example, over the past 20 years, in the United States, the average

duration from phase 1 through phase 3 has increased by over 30% for Oncology drugs, and has

almost doubled for CNS, Autoimmune/Inflammation, Cardiovascular, Metabolic/Endocrinology,

and Genitourinary drugs. While Infectious Disease drugs have seen a reduction in trial durations

around the COVID-19 pandemic, they seem to have resumed their upward trend since. Finally,

while Vaccines and Ophthalmology drugs do not show as strong an increase in trial durations over

time, it is important to remember that they only account for about 6% of the trials in our sample

(see Panel E in Table 1).17

Next, we investigate the extent to which the scientific risks associated with the approval pro-

cess have changed over time. While such risks are certainly difficult to measure, we believe it

is reasonable to assume that trials without a previously approved target or mechanism of action

(MOA) should exhibit substantially higher uncertainty with respect to their likelihood of approval.

As such, in the top three panels of Figure 6, we plot the percentage of trials investigating drugs

with targets or MOA’s with no prior approval. In the bottom three panels, we express these fre-

16We start in 2001 to ensure enough observations of trials ending in that year, for each therapeutic area and trial
phase.

17Figure A.1 in the Appendix shows very similar trends in median trial durations as well.
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quencies as a percentage of the number of unique drugs investigated in trials starting each year.

The two leftmost panels show almost a doubling in the preponderance of trials and drugs with no

previously approved targets and MOAs. Comparing the middle 2 panels with the two rightmost

panels we see that this trend is significantly more pronounced in the trials sponsored by the “All

but Top 20 Pharma” group. The results in Figure 6 suggest that the scientific risk involved in the

drug-development process has significantly increased over the past two decades, particularly for

drug-development programs undertaken by smaller sponsors.

The trends documented in this section provide suggestive evidence that innovation in drug-

development has become increasingly more susceptible to underinvestment risk. The larger pre-

ponderance of small sponsors (Figure 3 and 4), dramatically longer lags between cash outflows

and inflows (Figure 5), and increased prevalence of unproven drug targets and MOA’s (Figure 6)

are certainly consistent with the upward trend in funding-related trial-terminations documented

in Figure 2. We conclude this section with a regression analysis investigating the extent to which

funding-related terminations are related to fluctuations in equity valuations and macroeconomic

uncertainty controlling for the common trends documented above.

In Panel A of Table 7, we present trial-level regressions where the dependent variable is binary

indicator which equals 1 if the trial was terminated due to lack of funding (as specified in the “tri-

alOutcomes” field in the Trialtrove dataset). The regression includes all trials that were terminated

between 2000 and 2023. The independent variables include a linear trend, an indicator for whether

the trial had a “Top 20 Pharma” sponsor, the trial’s duration, the Baker and Wurgler sentiment

index as a measure of supply shocks in the equity market, and the CBOE’s VIX index as a measure

of uncertainty shocks in the equity market.18 The results in Panel A show that, consistent with the

findings documented in this section, funding-related terminations exhibit a strong upward trend,

are significantly less likely if the trial has a “Top 20 Pharma” sponsor, and significantly more likely

for trials of longer duration. The last two columns in Panel A show that, even after controlling

for the trend, sponsor type, and trial duration, terminations due to funding are significantly less

likely during periods of high sentiment in equity markets, and more likely during periods of high

expected volatility in equity markets.

In Panel B, we present macro-level regressions where the dependent variable is the percentage

18The daily VIX index was averaged out over the 12 months leading up to each trial’s termination.
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of trials terminated due to lack of funding in each year between 2000 and 2023. Since the trends in

trial durations and sponsorship type are highly correlated with our linear trend, we exclude them

from these macro-level regressions, and only control for the linear trend. Given the propensity of

small biotech firms to be financed through equity initial public offerings (IPO’s), we also include

the aggregate IPO volume in the United States as a control variable. The results in Panel B,

not surprisingly also show a strong linear trend in the percentage of terminations caused by lack

of funding. Controlling for this trend however, we find that the percentage of funding-related

terminations is significantly lower when equity-market sentiment is high, when aggregate IPO

volume is high and when expected equity-market volatility is low. The last column in Panel B

shows that the Baker-Wurgler index remains significant even when controlling for IPO volume,

despite the fact that it uses IPO volume as part of its construction. This suggests that current IPO

volume is not a sufficient statistic describing the impact of equity supply shocks on trial-termination

decisions.

5 The increased concentration in drug-development programs

The previous two sections have laid out the case that the financing frictions faced by firms in the

drug-development process are substantial, and have become significantly more severe over time.

The underinvestment risk caused by these frictions is particularly concerning given that successful

drugs stand to have significant societal value beyond their potential profitability for firms. The fact

that this underinvestment risk seems to have increased at the same time that artificial intelligence

algorithms have begun to significantly expedite the process of uncovering promising new drug

candidates (Sarkar et al. (2023), Chen et al. (2024)) makes it even more imperative that we explore

alternative approaches of alleviating the financial constraints faced by drug developers.

We focus our attention on the securitization approach proposed by Fernandez, Stein & Lo

(2012), who argue that a “megafund” could be used to finance a large-enough number of drug-

development programs that the scientific risks associated with individual projects would largely

be diversified away. This could make the risk-return profile of the fund attractive enough to raise

more capital, at a better price than if drugs were funded separately. The fund could also issue

different tranches of debt and equity, allowing for the distribution of different levels of risk to market
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participants of different levels of risk aversion. However, the 2007-2008 financial crisis has made it

abundantly clear that securitization without a thorough understanding of the correlations between

constituent assets can have severe consequences. In this section, we take the first steps towards

understanding correlations between drug-development programs. We begin with a discussion of

how these correlations might arise, and we continue with an analysis of how they have evolved over

time.

Drug discovery entails developing molecules or techniques designed to disrupt mechanisms of

disease and/or repair biological processes in disarray. Research initially focuses on developing an

understanding of the pathological basis of the disease, and continues with a search for approaches

to modify biologic pathways through which the disease progresses. These pathways – targets

– are validated through the successful development of a safe and effective therapeutic. Failure

of drug development comes from either the selection of a target that is non-fundamental to the

disease state, a drug that does not impact its target to a meaningful extent, or a product that

is overly toxic. Common exposures to these failure modes can result in substantial correlations

between the probability of success (PoS) of drugs with similar target selection, mechanism of

action or molecular structure. As concrete examples of such correlations, consider that 16 Insulin-

like Growth Factor Receptor-1 inhibitors have been studied in 183 separate clinical trials, and all

of these trials have failed, indicating a flawed target hypothesis. On the positive side, at least

nine PD-1/L1 monoclonal antibodies have received FDA approval, following initial trials for these

classes of molecules successfully validating the target, which led many developers to attempt to

create molecules that are very similar to the initial successful drugs.

This inherent correlation between drug development programs seems to be readily acknowledged

in the drug-discovery process. This is evidenced by the fact that formal computational methods

have been developed specifically for the purposes of identifying drugs that are suitable for thera-

peutic substitution and drug repurposing, presumably to take advantage of this implied correlation.

However, very little work has been done to assess the effects of this correlation on drug valuation

and financing.19 We attempt to at least partially fill this void in the literature, by investigating

19A notable exception is Lo and Siah (2021) who show that the performance of portfolios of rare diseases decreases
with the pairwise correlation in transition probabilities between drugs. The authors note that they were not able
to find any studies that try to quantify this correlation and assume it is 0.2 for any two drugs. Our study aims to
partially fill this gap in the literature by explicitly investigating the extent to which the average pairwise correlation
in approval outcomes has changed over time.
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the extent to which drug-development programs cluster around similar biological targets and how

this clustering has evolved over time.

We begin, in Figure 7, with an illustration of drug-target concentration in the full Pharmapro-

jects sample. Each node in the figure is a different biological target found in the database, and the

size of each node is proportional to the number of drugs with that target in the sample.20 There

are 47,546 unique drugs with target data in the sample, and 3,464 unique targets, for an average

of 13.7 drugs per target. To quantify the degree of concentration of drugs around the same target,

we compute the Gini index of inequality in node sizes, where a Gini index of 0 would signify that

each target is used by an equal number of drugs, and an index of 1 would mean that all drugs have

the same target. We find an Gini index of 0.78 in the full sample, which suggests there is a high

degree of concentration in target selection in the data.

To analyze how this target concentration has evolved over time, we merge the drug-level data

(Pharmaprojects) with the trial-level data (Trialtrove) based on “drugId” and we keep only the

phase 1 trials, to ensure that we are not double counting drugs that are more successful (i.e. drugs

that have passed more phases in the clinical trial process). We then repeat the process used to

create Figure 7 using only drugs that started phase 1 trials in 1998 (the first year in the sample

with at least 100 unique targets) and then using only drugs that started phase 1 trials in 2023. We

plot these graphs in the top two panels of Figure 8. These panels show a significant increase in

the number unique targets (nodes) in the past 25 years, but also increased concentration of drugs

around the same target (larger inequality in node sizes in 2023 compared to 1998). The bottom

two panels of Figure 8 illustrate trial-target concentration (i.e. node sizes are proportional to the

number of trials investigating drugs with that target). These bottom panels show a very similar

increase in concentration of trials around the same target.21

Figure 9 presents a more detailed look at the evolution of drug- and trial-target concentration

over time. The top-left panel shows the number of unique trials starting phase 1 each year, as

well as the number of unique drugs being investigated in those trials, and the number of unique

targets of those drugs. This panel shows that the increase in the number of trials and drugs has

20The positioning of each node in space is not meaningful.
21The Gini coefficients in the bottom panels of Figure 8 are lower than the Gini coefficient in Figure 7 because they

are based only on drugs starting phase 1 in each year, while Figure 7 uses all the drugs in our entire sample (across
all years and all phases).
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outpaced the increase in the number of targets. The top-right panel makes this observation more

precise, as it shows that the number of trials initiated per target has increased from 1.3 in 1998

to 2.4 in 2023. Similarly, the number of drugs investigated per target has nearly doubled, from

1.04 in 1998, to 1.99 in 2023. In the bottom left panel, we separately compute the Gini index of

inequality in drug-target selection (as discussed in Figure 7) using only the drugs starting phase 1

trials each year. The plot shows an 85% increase in drug-target concentration (from 0.21 to 0.39)

in the past 25 years. The bottom right panel computes these Gini coefficients at the trial-target

level and shows a similar trend in concentration (a 36% increase, from 0.425 in 1998 to 0.578 in

2023).

Next, we investigate the extent to which drugs with common targets have correlated outcomes

in the clinical trial process. To this end, we use the Pharmaprojects data on drug-development

projects described in Section 3.3 and keep all projects that have reached at least phase 1, for which

we have drug target data. We then calculate, for each drug i, the average approval rate (AAR) of

all other drugs using the same target:

AARi =
1

|Si| − 1

∑
j∈Si,j ̸=i

Approvedj (2)

where Si is the set of drugs sharing the same target as drug i, and Approvedj is an indicator

that drug j was approved. The term |Si| represents the number of drugs in the set Si. To ensure

that |Si| > 1 for each drug, we restrict the sample to drugs with targets developed by at least two

drugs.

Table 8 presents results from regressions of the type:

Approvedi = α+ βAARi + γXi + ϵi (3)

where Xi contains various drug-level controls which we will discuss shortly. We estimate the

model using OLS for simplicity, though the results are qualitatively unchanged when we use logistic

regressions. Standard errors are clustered at the therapeutic-area level (i.e. indication groups as

illustrated in Table 3). In the first column of Table 8 we use the AARi as the single indepen-

dent variable and we find that it a significant predictor of approval outcomes. Specifically, a one
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percentage point increase in the approval rate of drugs with the same target is associated with a

0.94 percentage point increase in the likelihood of the drug being approved. Furthermore, the R2

coefficient shows that AARi by itself explains 20.5% of the variation in approval outcomes.

In columns 2 through 4 of Table 8 we add several other drug-level characteristics to our regres-

sion. Specifically, in column 2, we control for the therapeutic area of the drug (through indicator

variables). In column 3 we control for the target family of the drug by including dummy variables

which equal 1 if the drug’s target is an “enzyme”, “receptor”, “transporter”, “ion channel”, or “cy-

tokine/growth factor” (as defined by the “targetFamilies” variable in Pharmaprojects). Similarly,

in column 3, we control for the general MOA family of the drug as defined by the “mechanismHierar-

chy” variable in Pharmaprojects. Specifically, we include indicator variables for each of the following

MOA categories: “immunosuppressant”, “immunostimulant”, “dna inhibitor”, “dna synthesis in-

hibitor”, “ion channel antagonist”, “protein kinase inhibitor”, “growth factor receptor antagonist”,

“cell cycle inhibitor”, “apoptosis stimulant”, “angiogenesis inhibitor”, and “5 hydroxytryptamine

receptor antagonist”. The results in columns 2 through 4 show that the AARi variables remains sta-

tistically significant throughout, which provides reassurance that it is not simply capturing general

variation in approval rates by therapeutic area, target family or MOA family.

The results in this section highlight two competing forces that may act to influence the degree

to which portfolios of drug-development programs can result in better risk-return tradeoffs. On

the one hand, the increased concentration of drugs and trials around similar targets implies that

randomly selecting drugs for the portfolio will result in a higher likelihood of selecting drugs with

the same target, which, based on the findings in Table 8, should result in more correlated outcomes

across drugs in the portfolio. On the other hand, the larger number of targets available could

improve portfolio diversification through careful selection of drugs with unrelated targets. We

examine the effect of these competing forces on drug-portolio performance in the next section.

6 Performance of drug portfolios

We begin our analysis of drug-portfolio performance with a series of simulations aimed at developing

a better understanding of how portfolio returns and volatilities vary with the number of drugs in the

portfolio. In particular, we are interested in a measure of portfolio returns that captures societal
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(rather than financial) value as well as possible. As such, we measure portfolio returns as the

number of drugs in the portfolio that achieve regulatory approval, divided by the total clinical trial

costs incurred by the drugs in the portfolio. While we acknowledge that not all approved drugs

provide equal societal value, a simple approval count avoids the need to pass judgement on the

relative improvements in quality of life provided by the alleviation of different medical conditions.

Roughly speaking, one could also think of these as the total financial returns obtained if, on average,

approved drugs resulted in $1 billion of free cash flows (in present value terms).

6.1 Full-sample simulations

For our initial set of simulations, we use the Pharmprojects drug-development project dataset

described in Section 3.3, and we make the simplifying assumption that all these projects would

have been available to invest in at the same time (we relax this assumption later on in this section).

For each N from 1 to 100, we randomly draw N drugs from the entire dataset, and use the

“highestPhaseReached” variable to record the outcomes of the portfolio’s drugs. We repeat this

100,000 times for each N . For each simulated portfolio of N drugs, we compute the return on that

portfolio as:

RN =

∑
i=1,N Approvedi∑

i=1,N Costi
(4)

where i = 1, N are the N drugs in the portfolio, Approvedi is an indicator that drug i was approved,

and Costi is the total clinical trial costs incurred by that drug (in billions of 2023 dollars). Since

our dataset does not provide data on these costs, we draw them randomly as well, using the

estimates from DiMasi, Grabowski, and Hansen (2016) to calibrate our simulations. The authors

surveyed pharmaceutical companies to obtain detailed research and development costs for a set

of 106 randomly selected drugs. They document average out-of-pocket development costs of 25.3,

58.6, and 255.4 million USD (in 2013 dollars) for phases 1, 2, and 3 respectively. The standard

deviations of these costs were 29.6, 50.8, and 153.3 respectively. We convert these parameters to

2023 dollars, and, each time we draw a random portfolio of N drugs for our simulations, we also

draw their development costs from log-normal distributions with means and standard deviations
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as listed above.22

Figure 10 shows histograms of the simulated number of approved drugs per portfolio (left), total

portfolio costs (middle) and the ratio of the two i.e. RN (right) for portfolios of 1 (top), 20, (center),

40 and 100 drugs (bottom). The top three histograms show that, with portfolios of a single drug,

we obtain very skewed distributions for approvals, costs, and returns, with a particularly concerning

mass at 0 for the distribution of returns (covering 79% of outcomes). The histogram legends contain

information about the mean and standard deviations of the distributions depicted. Portfolios of 1

drug provide an average of 0.21 approvals per portfolio, cost an average of $0.2 billion to develop,

and provide an average of 0.57 approvals per billion spent.

The second row of histograms shows that even moderately sized portfolios of 20 drugs provide

significant diversification benefits over portfolios of a single drug. While the average number of

approvals and average portfolio costs for N = 20 are, naturally, 20 times larger than their N = 1

counterparts, the standard deviations are only 4.4 times larger for the number of approvals (from

0.41 for N = 1 to 1.81 for N = 20) and 4.5 times larger for total costs (from 0.21 for N = 1 to 0.95

for N = 20). The benefits of diversification are even more apparent when we compare the rightmost

histograms: the standard deviation of returns (RN ) decreases by 70%, from 1.24 for N = 1 to 0.38

for N = 20, and the likelihood of the portfolio obtaining no approvals decreases from 79% when

N = 1 to less than 1% when N = 20. Finally, one of the key findings of our paper, which we

will discuss in more detail later on in this section, is that this decrease in risk is associated with

an almost doubling in average returns, from 0.57 drugs per billion spent for N = 1 to 1.05 for

N = 20.23

The bottom row of histograms in Figure 10 compares portfolios of 40 drugs with portfolios of

22Fernandez et al. (2012), the original “megafund” paper that first suggested securitization as a solution to financing
drug development, also includes simulations showing that portfolios of drugs are likely to provide attractive risk-reward
profiles. A series of follow-on papers further refine these simulations and apply them to specific therapeutic areas
(Fagnan et al. (2014)), Fagnan et al. (2015), Das et al. (2018), Chaudhuri et al. (2019), Siah et al. (2021). We
differ from these studies in at least three important respects. First, while they draw transition probabilities from
synthetic distributions calibrated on previous studies, we draw directly from the distribution of realized outcomes.
This allows us to account for the inherent correlation in outcomes in the data. Second, we focus on the number of
approvals per billion spent, as opposed to financial returns. This allows us to hone in on the societal value provided
by drug-portfolio financing, and also sidesteps the complexities associated with determining the appropriate discount
rates that should be applied to the cash flows generated by the portfolio. Finally, as discussed in more detail in the
following section, we provide a time-series analysis of the extent to which the risk-return profiles of drug-portfolios
have changed over time, by running simulations separately on cohorts of drug-development programs that started
clinical trials in the same year.

23Note that this is a mean of ratios not a ratio of means (which would not vary with the size of the portfolio).
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100 drugs. Not surprisingly, the average number of approvals and total costs increase linearly with

portfolio size. However, the bottom right panel shows that the average portfolio return is virtually

identical between portfolios of size 100, 40, and 20 (1.05 for all three) suggesting that we obtain

virtually no additional benefits in terms of average returns by increasing portfolio size beyond 20

drugs. On the other hand, comparing standard deviations reveals that increasing portfolio size does

continue to significantly decrease portfolio risk, for example providing more than 50% reduction in

standard deviation from N = 20 to N = 100. To showcase the benefits of this reduction in portfolio

risk with a focus on the left side of the distribution, we note that our simulations estimate that

the probability of obtaining a return of less than 0.5 (i.e. 1 approval per 2 billion spent) is 79% for

single drug portfolios, but only 7.6% for N = 20, 1.8% for N = 40, and 0.05% for N = 100.

Figure 11 provides a more detailed look at the risk-return characteristics of drug portfolios, as

a function of portfolio size. The top left panel plots average portfolio returns (RN ) obtained from

our simulations, for each N from 1 to 100. Mirroring the results from Figure 10, the plot shows a

substantial increase in average returns as a function of portfolio size, up to a scale of about 20 drugs,

after which they rapidly converge towards 1.06, which is the ratio of average number of approvals

to average total costs. The top right panel of the figure shows the 25th and 75th percentiles of each

return distribution, alongside the means. This panel shows us another view at the rapid decrease

in return dispersion as a function of portfolio size, which substantially tapers off around portfolios

of about 40 drugs. Consistent with this tapering behavior, while the bottom left panel of the figure

shows that return standard deviations continue to decline beyond N = 40, the bottom right panel

shows that they do so at a very slow pace, with each additional drug decreasing portfolio standard

deviation by about 0.5%.

To gain a better understanding of the behavior of portfolio returns as a function of portfolio

size, we perform a second order Taylor approximation of the return function around the expectation

of number of approvals and expectation of development costs and obtain:

E(RN ) ≡ E(AN/CN ) ≈ E(AN )

E(CN )

[
1− Cov(AN , CN )

E(AN )E(CN )
+

V ar(CN )

E(CN )2

]
(5)

=
E(AN/N)

E(CN/N)

[
1− Cov(AN/N,CN/N)

E(AN/N)E(CN/N)
+

V ar(CN/N)

E(CN/N)2

]
(6)
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where AN is the number of approvals in a portfolio of N drugs (i.e. the numerator in Equation 4),

and CN is the total cost of development in a portfolio of N drugs (i.e. the denominator in Equation

4).

Equation 6 shows that the expected return on a portfolio of drugs depends not only on the

average rate of approval (E(AN/N)) and average development costs per drug (E(CN/N)), but also

on the covariance between approval frequency and average development costs (Cov(AN/N,CN/N))

and the variance of average development costs (V ar(CN/N)). It can be shown that, if drug-

development outcomes are pairwise independent, both the covariance term and the variance term

converge to 0 as N → ∞, and the expected return on the portfolio converges to the ratio of

probability of success (PoS) to average development cost (i.e. E(AN/N)/E(CN/N)). However,

if, as we document in Section 5, drug-development outcomes are correlated, these terms converge

to a function of the average covariance between phase transitions of different drugs (and average

development cost for each phase). The limiting behavior documented in the top left panel of Figure

11 suggests that, for moderately-sized portfolios of about 20 drugs, these pairwise correlations

between drug-development outcomes have almost no effect on the average number of approvals per

billion spent.

To examine how portfolio return standard deviation depends on portfolio size, we use a first or-

der Taylor approximation of returns around the expectation of number of approvals and expectation

of development costs and obtain:

σ(RN ) ≡ σ

(
AN

CN

)
≈ E(AN )

E(CN )

[
Var(AN )

E(AN )2
− 2

Cov(AN , CN )

E(AN )E(CN )
+

Var(CN )

E(CN )2

]1/2
(7)

=
E(AN/N)

E(CN/N)

[
Var(AN/N)

E(AN/N)2
− 2

Cov(AN/N,CN/N)

E(AN/N)E(CN/N)
+

Var(CN/N)

E(CN/N)2

]1/2
(8)

Once again, it can be shown that, if drug-development outcomes are pairwise independent, the

three terms in brackets in Equation 8 converge to 0 as N → ∞, leading the standard deviation

of portfolio returns to converge to 0. The bottom left panel in Figure 11 shows that, even for

portfolios of 100 drugs, the return standard deviation is well above 0, at 0.18, and decreasing by

0.5% per additional drug. This suggests that cross-drug outcome correlations do play a significant

role as a limiting factor for portfolio diversification.
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6.2 The effects of increased correlations in drug-development outcomes

The fact that portfolios of 20 drugs have return standard deviations that are 70% lower than

the average standard deviation of individual drugs means that the benefits of diversification are

still substantial in drug development. However, it is important to recognize that this finding may

overestimate the extent to which one can diversify away idiosyncratic risk in drug development in

recent years. First, our simulations assume that all drugs in our sample are available to invest in

at the same time, which underestimates potential cross-sectional correlation in drug development

outcomes driven by common macroeconomic shocks. Second, our results in Section 5 show evi-

dence of increased concentration of drug-development around similar targets, which leads to more

correlation between drug-development outcomes in recent years.

In this section, we examine the extent to which the benefits of constructing portfolios of drug-

development project has changed over time. To this end, we run our simulations separately on

different cohorts of drugs which started development at similar times. To determine when each

drug development programs started, we merge the Pharmaprojects database on drug-development

programs (Section 3.3) with the trial-level data from Trialtrove (Section 3.1).24 This allows us to

identify trials associated with each drug-development program. When a phase 1 trial was not found

for a program, we impute its starting date from the starting date of the earliest available clinical

trial, by subtracting the average duration of the missing phases for that therapeutic area (see Table

2).

Each year from 1998 to 2013 we re-run the simulations described above using only the drugs

that started development that year. We begin in 1998 because it is the first year in our sample with

at least 100 targets. We end in 2013 to limit the potential for a downward bias in approval rates

caused by the fact that we can only include completed drug-development programs in our tests. As

Table 2 shows, this process takes an average of 6 years, and significantly higher for oncology drugs

(about 10 years). Since our sample ends in 2023, looking at programs starting after 2013 will bias

the sample towards programs that have completed significantly earlier than average (particularly

24The merge is done at the drug-disease-sponsor-country level. Matching on drugs is done using the “drugId”
variable common to both datasets. Merging on disease is done through a combination of matching on disease names,
and several standard disease classification codes: “meshId”, “icd9Id”, “icd10Id”, and “snomedId”. Merging by
sponsor is done by matching sponsor “parentCompanyId” in Trialtrove, with “companyId” in Pharmaprojects (or
with Pharmaprojects’ “parentCompanyId” variable when “companyId” does not match).
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for oncology drugs, which constitute over 30% of our sample), which is more likely to be the case for

failed projects. Finally, to account for the well documented increase in clinical trial costs over time,

we use the estimates from DiMasi, Hansen, and Grabowski (2003) to randomly draw trial costs for

programs starting development prior to 2000. The authors document average out-of-pocket costs

of $15.2, $23.5, and $86.3 billion (in 2000 USD) and standard deviations of $12.8, $22.1, $60.6 for

phases 1, 2, and 3, respectively. For trials starting between 2000 and 2013, we linearly interpolate

between these estimates and those from DiMasi, Grabowski, and Hansen (2016) discussed above

(after converting both to 2023 USD).

Table 9 describes portfolio average returns obtained from running our simulations on a year-

by-year basis as described above. Panel A presents average returns for portfolios of 1, 20, and 100

drugs (E(R1), E(R20), and E(R100) respectively) as well as the percentage improvement in average

returns going from portfolios of 1 drug to portfolios of 20 drugs and 100 drugs. The first column in

Panel A shows that average returns on portfolios of 1 drug were about 5 times larger in 1998 than

in 2013. However, the second column shows that portfolios of 20 drugs experienced a much lower

decline. The third column shows that the benefits to scale have significantly increased over time.

For drugs starting development in 2013, portfolios of 20 drugs have average returns that are 115%

larger than the average returns on single-drug portfolios. This improvement in average returns was

only 14% in 1998. Finally, the last two columns in Panel A show that increasing portfolio size

beyond 20 drugs has never provided any additional benefits in terms of increasing average portfolio

returns.

Panel B in Table 9 provides a decomposition of average portfolio returns for N = 20 by examin-

ing how the terms in Equation 5 have changed over time. The key takeaway from this panel is that

the decrease in portfolio average returns we document in the second column in Panel A has mainly

been driven by a decrease in approval probability and increase in clinical trial costs. To see this,

note that the first column in Panel B shows that the average number of approvals for a portfolio

of 20 drugs has dramatically decreased over time. At the same time, the second column shows

that average costs for such a portfolio have remained quite stable. While clinical trial costs have

nearly doubled in this period (Scannell et al. (2012),DiMasi, Grabowski, and Hansen (2016)), the

likelihood of reaching phase 3 (by far the most costly phase) has significantly decreased, resulting

in stable average costs. The third and fourth columns show that both the variance of total costs
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(V ar(C20)) and their covariance with the number of approvals (Cov(A20, C20)) have increased over

time. However, they enter Equation 5 with opposite sign. This causes the term in brackets in

that equation to be nearly 1 every year (see “Multiplier” column). Hence, the decrease in portfolio

returns is dominated by the decrease in average approvals to average costs (E(A20)/E(C20)).

Table 10 describes the evolution of return standard deviations for portfolios of 1, 20, and 100

drugs. The first, second, and fourth columns show significant decreases in standard deviations over

time at all scales (we will explore this further in Panel B). The third column in Panel A shows

substantial benefits to diversification every year. While the extent to which portfolios of 20 drugs

are able to diversify away idiosyncratic risk has decreased over time, it remains quite significant

(e.g. a 64% reduction for portfolios constructed in 2013). The last column in Panel A shows that

portfolios of 100 drugs see only a minimal decrease in diversification benefits over time.

In Panel B of Table 10 we aim to gain a better understanding of the decrease in portfolio standard

deviations over time, focusing on portfolios of 20 drugs. Since we are particularly interested in how

the variance in total approvals contributes to the change in return standard deviations, we re-write

Equation 7 as:

σ(RN ) ≈
[
Var(AN )

E(CN )2
− 2

Cov(AN , CN )E(AN )

E(CN )3
+

Var(CN )E(AN )2

E(CN )4

]1/2
(9)

and we present how the three terms on the right hand side of this equation have evolved over time

in the first three columns of Panel B. A comparison of these three columns reveals that the decrease

in the V ar(A20)/E(C20)
2 term has had the highest contribution to the decrease in portfolio return

standard deviations over time. The last two columns of Panel B further break down this term and

show that its decline is mainly driven by the fact that the variance in portfolio approvals (V ar(A20))

has significantly decreased over time. It can be shown that, as N increases, this variance converges

to the average pairwise covariance in drug approvals. The fact that this has decreased over time

suggests that, while the increase in concentration around similar targets may have created larger

pockets of highly correlated outcomes, this effect is dominated by the significant increase in the

total number of targets, resulting in lower average pairwise correlations between drugs.

We conclude our analysis with an investigation of the extent to which poor diversification across

biological targets can affect the risk-return characteristics of drug portfolios. To this end, we run
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simulations where portfolios are built by randomly drawing from the set of available targets each

year (as opposed to randomly drawing from the set of unique drugs). Once a target is selected, we

include in the portfolio all the drugs with that target starting development that year. We repeat

the process until we hit the desired total number of drugs in the portfolio.

The first three columns in Table 11 present the average returns, standard deviations, and ratio

of average return to standard deviation obtained from this “target clusters” portfolio construction

method. To ensure a clean comparison, the middle three columns present results obtained from

our regular “random drugs” construction method, this time restricting ourselves to the drugs for

which we have target data.25 The last three columns show how portfolio characteristics change

when moving from a “random drugs” approach to a “target clusters approach”. These results show

that improper diversification across targets results in higher portfolio standard deviations in every

year of our sample, and even lower average returns in nine out of the 16 years. This amounts to

significantly lower ratios of average returns to standard deviations, particularly in the second half of

the sample. It is important to note that this “target clusters” approach is a much closer reflection

of how pharmaceutical companies actually develop their portfolios of drugs given the specialized

nature of expertise required to develop drugs for each different target. Our findings suggest that

this portfolio construction approach does not take full advantage of the benefits of scale in drug

development.

7 Conclusion

Our study documents an escalation in underinvestment risk in drug development, primarily driven

by financial constraints and evolving sponsor dynamics. Over the past two decades, large phar-

maceutical companies have notably reduced their participation in early-phase clinical trials, and

this gap has been filled by smaller pharmaceutical firms and academic institutions, entities that

often face significant financial limitations. Coupled with prolonged clinical trial durations and an

increased focus on drugs targeting unproven biological mechanisms, the industry is experiencing

heightened exposure to external financing fluctuations. We provide direct evidence of this phe-

nomenon by showing that the proportion of clinical trials terminated due to lack of funding has

25A comparison of these columns with the E(R20) column in Table 9 and the σ(R20) column in Table 10 reveals
almost identical results with the simulations using the full sample of drugs.
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increased steadily over time, and significantly more after periods of low equity market sentiment,

low IPO volume, or high equity market volatility. These trends raise concerns about the sustain-

ability of current funding models and the potential abandonment of projects that hold substantial

societal value due to financial constraints rather than clinical viability.

To address these challenges, we explored securitization as a potential financing solution that

could mitigate financial risks associated with drug development. By aggregating multiple drug

development projects into diversified portfolios, securitization can diminish idiosyncratic risks and

offer a more attractive investment proposition. Our simulation analysis demonstrates that portfolios

consisting of 20 drugs significantly reduce investment risk and increase average returns compared

to single-drug investments. These findings suggest that portfolio-based financing approaches can

improve capital efficiency and attract a broader range of investors to support pharmaceutical in-

novation.

However, our study also highlights the critical role of correlations between drug development

projects in determining the effectiveness of diversification strategies. We document an increased

concentration of drugs targeting similar biological mechanisms and show that it leads to correlated

approval outcomes, potentially diminishing the benefits of diversification. Despite this trend, our

simulations reveal that the expansion in the total number of unique biological targets over time has

provided opportunities to construct portfolios with lower average correlations between projects,

counteracting the effect of increased target concentration. Our findings show that, by carefully

selecting drugs with diverse targets, investors can maximize risk reduction and improve the risk-

reward tradeoffs associated with drug development projects.
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Figure 1
Number of trials by phase

This figure shows the number of trials initiated every year, by phase. The top panel includes trials from all countries
in our dataset, while the bottom panel includes only trials in the United States.
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Figure 2
Trial terminations

The upper left panel in this figure plots the percentage of trial terminations citing lack of funding and the upper right
panel plots the percentage of terminations citing a business decision. The bottom panels break down these trends for
trials with and without a top 20 pharma sponsor.
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Figure 3
Number of trials by sponsor type

This figure shows the number of trials initiated every year, by sponsor type. The top panel includes all trials in
our dataset, while the bottom panel includes only trials in the United States. The vertical dashed lines indicate the
percentage of trials with sponsors from each category in those respective years.
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Figure 4
Number of trials by phase and sponsor type

This figure shows the number of trials initiated every year, by trial phase and sponsor type. The left panels include
all trials in our dataset, while the right panels include only trials in the United States. The vertical dashed lines
indicate the percentage of trials with sponsors from each category in those respective years.
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Figure 5
Average trial duration from start of phase I to end of phase III

This figure shows the sum of average trial durations for Phases I, II, and III, for each therapeutic area in the Trialtrove
dataset. Each panel corresponds to a different therapeutic area and presents averages for trials taking place in the
United States as well as averages over all trials in the dataset.
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Figure 6
Trends in targets and MOAs with no prior approval

The top three panels in this figure show the percentage of trials investigating targets, or mechanisms of action (MOAs)
with no prior approval. The bottom three panels show these same three categories as a percentage of the number
of unique drugs investigated in trials starting each year. The leftmost panels in each row use all the trials in our
dataset, the middle two use only trials sponsored by a top 20 pharma company, and the rightmost two use all the
trials not sponsored by a top 20 pharma company.
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Figure 7
Drug-target concentration

This figure illustrates the concentration of drugs around the same target using the full Pharmaprojects database.
Each node in the figure is a different biological target found in the database, and the size of each node is proportional
to the number of drugs with that target in the sample.
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Figure 8
Evolution of concentration in target selection

This figure illustrates the concentration of drugs around the same target for drug development programs initiated in
1998 (leftmost panels) and 2023 (rightmost panels). Each node in the figure is a different biological target found in
the database. In the top two panels, the size of each node is proportional to the number of drugs with that target
and in the bottom two panels, the size of each node is proportional to the number of trials investigating drugs with
that target.
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Figure 9
Trends in target concentration

The top left panel shows the evolution of number of unique trials, drugs, and targets over time. The top right panel
shows the average number of trials per target and average number of drugs per target. The bottom panels plot the
Gini index of inequality in the size of drug-target clusters (left) and trial-target clusters (right). In all panels, for
each year, we use only the drug-development programs that started Phase I that year.
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Figure 10
Simulated distribution of drug portfolio approvals, costs, and returns

This figure shows histograms of the simulated number of approved drugs per portfolio (left), total portfolio costs
(middle) and the ratio of the two (right) for portfolios of 1 (top), 20, (center), 40 and 100 drugs (bottom). See
Section 6.1 for a more detailed discussion on how these simulations are run.
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Figure 11
Portfolio average returns and standard deviations

This figure shows risk-return characteristics of drug portfolios, as a function of portfolio size. Using the simulated
distributions of portfolio returns, we plot return averages in the top left panel, interquartile ranges in the top right
panel, standard deviations in the bottom right panel, and the percentage change in standard deviations in the bottom
right panel. See Section 6.1 for a more detailed discussion on how these simulations are run.
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Table 1
Clinical Trial Summary Statistics

This table presents summary statistics for the trial-level data obtained from Trialtrove. Statistics are compiled for
the full dataset (first two columns), the top 40 countries where the most trials were conducted (the middle two
columns), and for the United States alone (last two columns). Panel A shows covarage statistics for some key trial
characteristics. The remaining panels summarize the breakdown of trials by trial status (Panel B), trial phase (Panel
C), sponsor types (Panel D) and main therapeutic area of the disease targeted by the trial (Panel E). In panels A
and B, the percentages are calculated based on the topline “Trials” count (the first row in the table). In panels C,
D, and E, the percentages are calculated based on the number of trials with available information on the respective
variable. For panels D and E, these percentages may add up to more than 100% as a trial can have multiple sponsors
or target multiple therapeutic areas.

All 200 countries Top 40 Countries United States
N % N % N %

Panel A: Data coverage

Trials 407,935 1.00 374,191 1.00 123,656 1.00
Trials with phase data 380,446 0.93 349,649 0.93 117,231 0.95
Trials with sponsor data 371,642 0.91 342,891 0.92 111,565 0.90
Trials with therapeutic area data 358,511 0.88 331,637 0.89 104,419 0.84

Panel B: Trial status

Ongoing 58,530 0.14 55,737 0.15 16,718 0.14
Completed 303,032 0.74 278,952 0.75 86,173 0.70
Terminated 46,373 0.11 39,502 0.11 20,765 0.17

Panel C: Trial phase

Phase I 81,788 0.21 71,769 0.21 28,187 0.24
Phase II 127,427 0.33 119,116 0.34 47,933 0.41
Phase III 61,947 0.16 57,402 0.16 21,554 0.18
Phase IV 109,284 0.29 101,362 0.29 19,557 0.17

Panel D: Sponsor types

Academic 206,831 0.56 195,719 0.57 48,948 0.44
Top 20 Pharma 74,356 0.20 68,227 0.20 38,270 0.34
All Other Pharma 84,962 0.23 75,675 0.22 31,308 0.28
Government 32,316 0.09 30,801 0.09 18,146 0.16

Panel E: Therapeutic areas

Oncology 90,991 0.25 87,404 0.26 35,707 0.34
CNS 66,406 0.19 61,561 0.19 21,568 0.21
Autoimmune/Inflammation 51,561 0.14 47,940 0.14 13,657 0.13
Infectious Disease 48,596 0.14 42,999 0.13 11,687 0.11
Cardiovascular 47,389 0.13 43,790 0.13 9,404 0.09
Metabolic/Endocrinology 47,363 0.13 42,498 0.13 11,822 0.11
Vaccines (Infectious Disease) 11,467 0.03 9,929 0.03 2,936 0.03
Genitourinary 11,261 0.03 10,290 0.03 2,099 0.02
Ophthalmology 9,375 0.03 8,725 0.03 2,491 0.02
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Table 2
Average Trial Duration by Therapeutic Area

This table presents average trial durations (in years) by therapeutic area. Panel A uses the full Trialtrove database,
while Panel B uses only trials taking place in the United States. Trial durations are calculated as the difference
between the trial start and end dates, divided by 365.

Phase I Phase II Phase III I + II + III

Panel A: All countries

Oncology 2.45 3.38 4.29 10.12
Cardiovascular 0.58 2.20 2.51 5.28
Ophthalmology 1.26 1.82 2.00 5.09
CNS 0.80 2.07 2.18 5.05
Metabolic/Endocrinology 0.63 2.06 2.13 4.82
Autoimmune/Inflammation 0.82 1.89 2.01 4.72
Genitourinary 0.68 1.80 2.03 4.50
Infectious Disease 0.84 1.56 1.73 4.14
Vaccines (Infectious Disease) 1.36 1.38 1.26 3.99

All therapeutic areas 1.19 2.49 2.37 6.05

Panel B: United States

Oncology 2.95 3.56 4.11 10.63
Cardiovascular 1.06 2.30 2.74 6.10
CNS 1.17 2.27 2.36 5.80
Metabolic/Endocrinology 0.94 2.30 2.38 5.61
Autoimmune/Inflammation 1.25 2.17 2.14 5.56
Genitourinary 1.09 2.22 2.21 5.53
Ophthalmology 1.55 1.76 2.08 5.38
Infectious Disease 1.21 1.86 2.01 5.08
Vaccines (Infectious Disease) 1.72 1.69 1.51 4.93

All therapeutic areas 1.86 2.76 2.55 7.18
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Table 3
Drug Summary Statistics

This table presents summary statistics for the drug-level data obtained from Pharmaprojects. Statistics are compiled
for the full dataset (first two columns), and for the drugs with trial information (last two columns). Panel A shows
covarage statistics for some key drug characteristics. The remaining panels summarize the breakdown of drugs by
origin (Panel B), and main indication group (therapeutic area) of the disease targeted by the drug (Panel C). In
panels A and B, the percentages are calculated based on the topline “Drugs” count (the first row in the table). In
panels B and C, the percentages are calculated based on the number of drugs with available information on the
respective variable. For panel C, these percentages may add up to more than 100% as a drug can target multiple
therapeutic areas.

All drugs Drugs with trial data
N % N %

Panel A: Data coverage

Drugs 104,129 1.00 28,606 1.00
Drugs with origin data 102,744 0.99 28,344 0.99
Drugs with indication group data 101,228 0.97 28,392 0.99
Drugs with mechanism of action data 72,971 0.70 23,677 0.83
Drugs with target data 47,537 0.46 17,966 0.63

Panel B: Drug origin

Biological 33,238 0.32 10,680 0.38
Chemical 66,133 0.64 16,864 0.59

Panel C: Drug indication groups

Anticancer 30,653 0.30 9,302 0.33
Neurological 17,381 0.17 4,984 0.18
Anti-infective 16,687 0.16 4,518 0.16
Alimentary/Metabolic 11,547 0.11 4,071 0.14
Cardiovascular 8,921 0.09 2,606 0.09
Musculoskeletal 7,720 0.08 1,919 0.07
Respiratory 5,452 0.05 2,029 0.07
Immunological 5,362 0.05 1,916 0.07
Dermatological 4,465 0.04 1,719 0.06
Blood and Clotting 4,126 0.04 1,480 0.05
Sensory 3,719 0.04 1,345 0.05
Genitourinary (including sex hormones) 3,435 0.03 1,444 0.05
Miscellaneous 1,419 0.01 618 0.02
Hormonal (excluding sex hormones) 879 0.01 246 0.01
Antiparasitic 876 0.01 140 0.00
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Table 4
Drug Development Programs

This table presents summary statistics for the Pharmaprojects data on drug-development programs. Statistics are
compiled for the full dataset (first two columns), and for the United States alone (last two columns). Panel A
shows a count of drug-development programs at several aggregation levels. Panels B and C break down the unique
drug-disease-sponsor-country records by the current development status of each program and the highest phased they
reached in the approval process.

All countries United States
N % N %

Panel A: Number of drug development programs

Unique drug-disease-sponsor-country records 584,726 114,450
Unique drug-disease-sponsor records 226,356 114,450
Unique drug-disease records 174,937 92,671

Panel B: Development status

Ceased 320,848 0.55 88,979 0.78
Widely Launched 166,780 0.29 6,799 0.06
Active 97,098 0.17 18,672 0.16

Panel C: Highest phase reached

Preclinical 181,500 0.31 65,872 0.58
Phase I 45,619 0.08 14,565 0.13
Phase II 80,284 0.14 18,958 0.17
Phase III 88,077 0.15 7,035 0.06
Approved 189,246 0.32 8,020 0.07
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Table 5
Phase Transition Probabilities

This table presents phase transition probabilities by therapeutic area for drug-development programs in the
Pharmaprojects dataset that are not in active development. The probability of transitioning from each phase of devel-
opment is calculated as 1 minus the number of drugs that fail in that phase (as given by the “highestPhaseReached”
variable in Pharmaprojects) divided by the total number of drugs that reached that phase. See Section 3.3 for more
details. The second to last column shows the probability of approval starting from the preclinical phase, and is
computed as the product of all four phase transition probabilities. The last column shows the likelihood of approval
starting from phase 1, and is calculated as the product of P1−2, P2−3, and P3−A. In Panel A, a drug-development pro-
gram is considered to have reached a given phase of development if it has done so in any country from the European
Union, United States or Japan. In Panel B, only phase transitions from the United States are considered.

N PPre−1 P1−2 P2−3 P3−A PPre−A P1−A

Panel A: All countries

Alimentary/Metabolic 10,146 40.5 70.3 48.3 64.8 8.9 22.0
Anti-infective 15,279 30.9 71.9 60.5 74.1 10.0 32.2
Anticancer 31,241 44.1 63.8 29.4 44.8 3.7 8.4
Antiparasitic 697 24.8 66.5 59.1 76.5 7.5 30.1
Blood and Clotting 3,587 42.3 73.8 61.3 71.4 13.7 32.3
Cardiovascular 8,738 41.0 76.9 55.4 63.4 11.1 27.0
Dermatological 3,789 51.3 77.1 46.7 73.1 13.5 26.3
Genitourinary (including sex hormones) 2,930 54.1 78.9 57.4 67.6 16.6 30.6
Hormonal (excluding sex hormones) 754 41.2 68.8 61.2 80.2 13.9 33.8
Immunological 4,340 38.1 69.5 49.2 66.6 8.7 22.8
Miscellaneous 1,044 46.5 78.8 63.6 60.9 14.2 30.5
Musculoskeletal 6,204 28.2 72.5 62.1 67.3 8.5 30.3
Neurological 17,494 37.7 71.6 48.4 60.5 7.9 21.0
Respiratory 5,328 45.5 74.8 46.9 64.0 10.2 22.5
Sensory 3,104 39.6 84.2 53.9 65.6 11.8 29.8

Total 114,675 40.0 70.6 46.8 63.0 8.3 20.8

Panel B: United States

Alimentary/Metabolic 6,529 40.5 71.7 47.8 57.7 8.0 19.8
Anti-infective 10,085 30.8 69.2 57.2 69.7 8.5 27.6
Anticancer 23,254 48.2 62.7 28.3 39.8 3.4 7.1
Antiparasitic 423 27.9 74.6 58.0 78.4 9.5 33.9
Blood and Clotting 2,220 43.6 74.9 58.1 62.1 11.8 27.0
Cardiovascular 5,096 40.3 79.1 53.9 55.7 9.6 23.7
Dermatological 2,424 49.3 76.9 45.2 67.5 11.6 23.5
Genitourinary (including sex hormones) 1,859 53.8 78.7 58.9 64.4 16.1 29.9
Hormonal (excluding sex hormones) 452 41.2 71.0 62.9 78.3 14.4 34.9
Immunological 3,017 38.8 73.1 48.3 59.4 8.2 21.0
Miscellaneous 811 46.2 78.4 60.9 58.7 12.9 28.0
Musculoskeletal 3,776 27.4 70.8 58.2 57.5 6.5 23.7
Neurological 11,506 37.7 73.8 47.6 55.8 7.4 19.6
Respiratory 2,926 44.5 75.7 44.1 58.5 8.7 19.5
Sensory 2,221 40.3 85.2 49.3 61.2 10.4 25.7

Total 76,599 41.3 70.2 44.1 56.5 7.2 17.5
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Table 6
Trial Outcomes

This table presents trial outcomes statistics for the Trialtrove data. Statistics are compiled for the full dataset (first
two columns), and for the United States alone (last two columns). Panel A shows the different outcomes for completed
trials and the percentages are calculated based on the number of completed trials with outcome data. Panel B present
outcomes for terminated trials, and the percentages are based on the number of terminated trials with outcome data.
In both panels, the percentages can add up to more than 1 since trials may have multiple outcomes listed.

All countries United States
N % N %

Panel A: Completed trials

Completed, Positive outcome/primary endpoint(s) met 32,832 0.45 14,109 0.48
Completed, Outcome unknown 24,097 0.33 6,350 0.22
Completed, Outcome indeterminate 8,202 0.11 5,163 0.18
Completed, Negative outcome/primary endpoint(s) not met 6,786 0.09 3,547 0.12
Completed, Early positive outcome 441 0.01 241 0.01

Panel B: Terminated trials

Terminated, Planned but never initiated 11,956 0.36 2,936 0.19
Terminated, Unknown 10,626 0.32 2,607 0.17
Terminated, Poor enrollment 6,038 0.18 3,623 0.24
Terminated, Other 4,029 0.12 2,164 0.14
Terminated, Business decision - Other 3,917 0.12 2,259 0.15
Terminated, Business decision - Pipeline reprioritization 3,220 0.10 1,204 0.08
Terminated, Lack of efficacy 2,818 0.08 1,875 0.12
Terminated, Safety/adverse effects 1,623 0.05 1,021 0.07
Terminated, Lack of funding 1,268 0.04 902 0.06
Terminated, Business decision - Drug strategy shift 1,237 0.04 542 0.04
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Table 7
Trial terminations due to funding

This table presents regression results on the determinants of trial terminations due to funding. In Panel A, we present
trial-level regressions where the dependent variable is a binary indicator for whether the trial was terminated due to
funding. Standard errors are clustered by year of trial termination. In Panel B, we present macro-level regressions
where the dependent variable is the percentage of terminations due to funding in a given year. Standard errors are
adjusted for serial correlation up to two lags, using the Newey-West (1997) estimator. Both panels include trials
ending between 2000 and 2023. t-statistics are reported in parentheses. *, **, and *** indicate statistical significance
at the 10%, 5%, and 1% levels, respectively.

Panel A: Trial-level regressions

Top 20 Pharma -0.04*** -0.04*** -0.04*** -0.04***
(-5.11) (-5.21) (-5.31) (-5.22)

Trial duration 0.03*** 0.03*** 0.03***
(3.47) (3.40) (3.39)

Baker-Wurgler sentiment -0.02*** -0.02***
(-3.53) (-4.07)

VIX 0.01***
(3.21)

Linear trend 0.02*** 0.02*** 0.02*** 0.02***
(3.45) (3.87) (4.59) (4.24)

Intercept 0.19*** 0.14*** 0.14*** 0.10***
(14.51) (10.89) (9.26) (4.71)

R2 0.002 0.003 0.003 0.003
Observations 25,070 25,070 25,070 25,070

Panel B: Macro-level regressions

Linear trend 0.74*** 0.70*** 0.82*** 0.82***
(5.87) (6.91) (7.73) (9.75)

Baker-Wurgler sentiment -0.37*** -0.29***
(-2.84) (-3.43)

Aggregate IPO volume -0.31** -0.21**
(-2.01) (-2.28)

VIX 0.35***
(7.77)

Intercept 2.22*** 2.38*** 2.49*** 1.22***
(7.58) (9.22) (9.67) (5.27)

R2 0.545 0.678 0.634 0.829
Observations 24 24 24 24
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Table 8
Predicting Drug Approvals

This table presents results from regressing drug-program approval indicators on the average approval rate of other
drugs with the same target and various drug-level characteristics. The sample includes only targets that have been
developed by at least 2 drugs. Therapeutic areas are as defined by Pharmaprojects (i.e. indication groups as
illustrated in Table 3). See Section 5 for a definition of target family and MOA family. Standard errors are clustered
at the therapeutic-area level. t-statistics are reported in parentheses. *, **, and *** indicate statistical significance
at the 10%, 5%, and 1% levels, respectively.

1 2 3 4

Approval rate of other drugs with same target (AAR) 0.94*** 0.92*** 0.91*** 0.89***
(38.41) (30.11) (29.61) (29.61)

Intercept 0.01* 0.07*** 0.07*** 0.08***
(1.81) (11.97) (9.98) (9.55)

R2 0.205 0.208 0.209 0.212
Observations 30,546 30,546 30,546 30,546

Therapeutic area indicators No Yes Yes Yes
Target family indicators No No Yes Yes
MOA family indicators No No No Yes
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Table 9
Evolution of drug portfolio average returns

This table describes average returns obtained from constructing simulated drug portfolios on a year-by-year basis as
described in Section 6.2. Panel A presents average returns for portfolios of 1, 20, and 100 drugs (E(R1), E(R20), and
E(R100) respectively) as well as the percentage improvement in average returns going from portfolios of 1 drug to
portfolios of 20 drugs and 100 drugs (third and fifth column). Panel B provides a decomposition of average returns on
portfolios of 20 drugs by examining how the terms in Equation 5 have changed over time. The “Multiplier“ column
calculates the term that appears in brackets inEquation 5.

Panel A: Drug portfolio average returns

E(R1) E(R20)
E(R20)
E(R1)

− 1 E(R100)
E(R100)
E(R1)

− 1

1998 2.24 2.55 0.14 2.54 0.13
1999 1.85 2.25 0.22 2.24 0.22
2000 1.59 1.82 0.14 1.81 0.13
2001 1.50 1.98 0.32 1.98 0.32
2002 1.02 1.49 0.45 1.49 0.46
2003 0.70 1.18 0.67 1.19 0.69
2004 0.72 1.23 0.71 1.24 0.73
2005 0.47 0.91 0.93 0.93 0.97
2006 0.47 0.97 1.04 0.99 1.08
2007 0.50 1.07 1.13 1.09 1.17
2008 0.42 0.97 1.29 0.99 1.35
2009 0.37 0.89 1.39 0.91 1.46
2010 0.50 1.06 1.13 1.08 1.17
2011 0.48 1.09 1.28 1.11 1.32
2012 0.44 0.94 1.12 0.96 1.15
2013 0.46 1.00 1.15 1.01 1.18

Panel B: Decomposition of average returns

E(A20) E(C20) Cov(A20, C20) V ar(C20)
E(A20)
E(C20)

Multiplier

1998 8.02 3.16 0.50 0.26 2.54 1.01
1999 6.62 2.96 0.48 0.26 2.24 1.01
2000 5.68 3.15 0.36 0.26 1.81 1.01
2001 6.06 3.06 0.52 0.26 1.98 1.00
2002 4.52 3.03 0.47 0.28 1.49 1.00
2003 3.41 2.86 0.44 0.27 1.19 0.99
2004 3.72 2.99 0.52 0.32 1.24 0.99
2005 2.59 2.78 0.44 0.32 0.93 0.98
2006 2.77 2.79 0.51 0.34 0.99 0.98
2007 3.00 2.74 0.61 0.37 1.10 0.98
2008 2.68 2.68 0.61 0.41 1.00 0.97
2009 2.45 2.68 0.59 0.46 0.91 0.97
2010 3.32 3.07 0.80 0.55 1.08 0.98
2011 3.35 3.00 0.87 0.61 1.12 0.98
2012 3.17 3.30 0.83 0.68 0.96 0.98
2013 3.41 3.36 0.95 0.77 1.01 0.99

57



Table 10
Evolution of drug portfolio standard deviations

This table describes the standard deviation of returns obtained from constructing simulated drug portfolios on a
year-by-year basis as described in Section 6.2. Panel A presents standard deviations of returns for portfolios of 1,
20, and 100 drugs (σ(R1), σ(R20), and σ(R100) respectively) as well as the percentage improvement in standard
deviations going from portfolios of 1 drug to portfolios of 20 drugs and 100 drugs (third and fifth column). Panel
B provides a decomposition of return standard deviations for portfolios of 20 drugs by examining how the terms in
Equation 9 have changed over time.

Panel A: Drug portfolio return standard deviations

σ(R1) σ(R20)
σ(R20)
σ(R1)

− 1 σ(R100)
σ(R100)
σ(R1)

− 1

1998 3.21 0.64 -0.80 0.28 -0.91
1999 3.05 0.65 -0.79 0.29 -0.91
2000 2.91 0.61 -0.79 0.27 -0.91
2001 2.55 0.60 -0.77 0.26 -0.90
2002 2.06 0.55 -0.73 0.24 -0.88
2003 1.67 0.52 -0.69 0.23 -0.86
2004 1.61 0.51 -0.69 0.22 -0.86
2005 1.30 0.48 -0.63 0.21 -0.84
2006 1.27 0.47 -0.63 0.21 -0.83
2007 1.27 0.48 -0.62 0.21 -0.83
2008 1.16 0.47 -0.60 0.21 -0.82
2009 1.08 0.46 -0.57 0.20 -0.81
2010 1.21 0.44 -0.64 0.19 -0.84
2011 1.18 0.44 -0.63 0.19 -0.84
2012 1.13 0.41 -0.64 0.18 -0.84
2013 1.14 0.41 -0.64 0.18 -0.85

Panel B: Decomposition of return standard deviations

Var(A20)

E(C20)2
Cov(A20,C20)E(A20)

E(C20)3
Var(C20)E(A20)

2

E(C20)4
V ar(A20) E(C20)

1998 0.48 0.13 0.17 4.79 3.16
1999 0.51 0.12 0.15 4.43 2.96
2000 0.41 0.07 0.09 4.03 3.15
2001 0.45 0.11 0.11 4.24 3.06
2002 0.38 0.08 0.07 3.51 3.03
2003 0.35 0.06 0.05 2.84 2.86
2004 0.34 0.07 0.05 3.04 2.99
2005 0.29 0.05 0.04 2.26 2.78
2006 0.31 0.07 0.04 2.38 2.79
2007 0.34 0.09 0.06 2.55 2.74
2008 0.32 0.08 0.06 2.33 2.68
2009 0.30 0.08 0.05 2.15 2.68
2010 0.29 0.09 0.07 2.77 3.07
2011 0.31 0.11 0.08 2.78 3.00
2012 0.25 0.07 0.06 2.68 3.30
2013 0.25 0.08 0.07 2.85 3.36
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Table 11
Effects of target clustering on drug portfolio returns

This table presents results obtained from building simulated portfolios by randomly drawing from the set of available
targets each year. Once a target is selected, we include all the drugs with that target starting development that year,
and we continue the process until we have selected 20 drugs. The first three columns in this table present the average
returns, standard deviations, and ratios of average returns to standard deviations obtained from this simulation
strategy. The middle three columns show the same metrics, obtained from our regular simulation methodology,
restricting ourselves only to drugs that have target data. The last three columns show how these metrics change
going from the regular “random drugs“ strategy to the new “target clusters“ strategy.

Using target clusters Using random drugs Percent difference

E(Rt) σ(Rt)
E(Rt)
σ(Rt)

E(Rd) σ(Rd)
E(Rd)
σ(Rd)

E(Rt)
E(Rd)

−1 σ(Rt)
σ(Rd)

−1 E(Rt)/σ(Rt)
E(Rd)/σ(Rd)

−1

1998 2.60 0.80 3.27 2.42 0.64 3.78 0.08 0.24 -0.14
1999 2.70 0.83 3.26 2.36 0.65 3.61 0.14 0.27 -0.10
2000 2.16 0.78 2.77 1.89 0.62 3.04 0.14 0.26 -0.09
2001 1.90 0.90 2.10 1.86 0.59 3.13 0.02 0.52 -0.33
2002 1.51 0.68 2.24 1.45 0.54 2.68 0.04 0.24 -0.16
2003 1.12 0.70 1.61 1.20 0.53 2.28 -0.07 0.32 -0.30
2004 1.10 0.64 1.71 1.20 0.50 2.41 -0.09 0.29 -0.29
2005 1.02 0.53 1.93 0.95 0.47 1.99 0.07 0.11 -0.03
2006 1.02 0.53 1.94 0.91 0.47 1.95 0.13 0.13 -0.01
2007 0.95 0.63 1.52 1.06 0.48 2.23 -0.10 0.32 -0.32
2008 0.85 0.61 1.39 0.95 0.47 2.00 -0.10 0.29 -0.31
2009 0.82 0.58 1.41 0.91 0.46 1.97 -0.10 0.25 -0.28
2010 0.98 0.53 1.86 1.10 0.44 2.52 -0.11 0.21 -0.26
2011 1.13 0.55 2.06 1.14 0.43 2.63 -0.01 0.26 -0.22
2012 0.87 0.45 1.93 0.98 0.40 2.42 -0.12 0.11 -0.20
2013 0.87 0.46 1.88 1.01 0.41 2.46 -0.14 0.13 -0.24
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Appendix A
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Figure A.1
Median trial duration from start of phase I to end of phase III

This figure shows the sum of median trial durations for Phases I, II, and III, for each therapeutic area in the Trialtrove
dataset. Each panel corresponds to a different therapeutic area and presents medians for trials taking place in the
United States as well as for all trials in the dataset.
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Table A.1
Median Trial Duration by Therapeutic Area

This table presents median trial durations (in years) by therapeutic area. Panel A uses the full Trialtrove database,
while Panel B uses only trials taking place in the United States. Trial durations are calculated as the difference
between the trial start and end dates, divided by 365.

Phase I Phase II Phase III I + II + III

Panel A: All countries

Oncology 2.07 2.92 3.61 8.61
Ophthalmology 0.83 1.42 1.59 3.84
Cardiovascular 0.23 1.67 1.92 3.82
CNS 0.34 1.59 1.75 3.67
Metabolic/Endocrinology 0.29 1.49 1.65 3.43
Autoimmune/Inflammation 0.41 1.42 1.56 3.39
Genitourinary 0.32 1.35 1.67 3.34
Vaccines (Infectious Disease) 1.09 0.99 0.84 2.92
Infectious Disease 0.42 1.09 1.27 2.78

All therapeutic areas 0.53 1.99 1.77 4.30

Panel B: United States

Oncology 2.63 3.01 3.37 9.01
Cardiovascular 0.44 1.72 2.18 4.35
CNS 0.58 1.75 1.89 4.22
Genitourinary 0.49 1.65 1.91 4.05
Ophthalmology 1.06 1.28 1.70 4.04
Autoimmune/Inflammation 0.67 1.63 1.69 3.98
Metabolic/Endocrinology 0.45 1.63 1.84 3.92
Vaccines (Infectious Disease) 1.42 1.25 1.10 3.77
Infectious Disease 0.74 1.40 1.61 3.75

All therapeutic areas 1.20 2.17 2.00 5.37

62


	Introduction
	The drug development process
	Data
	Clinical trial data
	Drug-level data
	Drug-development programs

	The growing importance of financial constraints
	The increased concentration in drug-development programs
	Performance of drug portfolios
	Full-sample simulations
	The effects of increased correlations in drug-development outcomes

	Conclusion
	

